分析 求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間,從而求出函數(shù)的極值即可.
解答 解:由f(x)=sinx-cosx+x+1,0<x<2π,
得f'(x)=cosx+sinx+1,
于是$f'(x)=1+\sqrt{2}sin({x+\frac{π}{4}})$.
令f'(x)=0,從而$sin({x+\frac{π}{4}})=-\frac{{\sqrt{3}}}{2}$,
得x=π或$x=\frac{3π}{2}$.
當x變化時,f'(x),f(x)的變化情況如下表:
x | (0,π) | π | $({0,\frac{3}{2}π})$ | $\frac{3}{2}π$ | $({\frac{3}{2}π,2π})$ |
f'(x) | + | 0 | - | 0 | + |
f(x) | 單調遞增 | π+2 | 單調遞減 | $\frac{3}{2}π$ | 單調遞增 |
點評 本題考查了函數(shù)的單調性、極值問題,考查導數(shù)的應用以及三角函數(shù)問題,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com