17.過點(diǎn)P(3,0)的直線l交圓C:x2+y2-4x=0于A,B兩點(diǎn),C為圓心,則$\overrightarrow{CA}•\overrightarrow{CB}$的最小值為-4.

分析 設(shè)∠ACB=θ,則由數(shù)量積的定義可得$\overrightarrow{CA}•\overrightarrow{CB}$=|$\overrightarrow{CA}$||$\overrightarrow{CB}$|cosθ=4cosθ,故而當(dāng)θ=180°時(shí)$\overrightarrow{CA}•\overrightarrow{CB}$取得最小值.

解答 解:圓C的標(biāo)準(zhǔn)方程為(x-2)2+y2=4,
∴圓C的半徑為2,即|$\overrightarrow{CA}$|=|$\overrightarrow{CB}$|=2,
設(shè)∠ACB=θ,則$\overrightarrow{CA}•\overrightarrow{CB}$=2×2×cosθ=4cosθ,
∴當(dāng)θ=180°時(shí),$\overrightarrow{CA}•\overrightarrow{CB}$取得最小值-4.
故答案為-4.

點(diǎn)評 本題考查了平面向量數(shù)量積的運(yùn)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{x+2}{x}$
(1)寫出函數(shù)f(x)的定義域和值域;
(2)證明函數(shù)f(x)在(0,+∞)為單調(diào)遞減函數(shù);并求f(x)在x∈[2,8]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知等差數(shù)列{an}滿足:a1=2,公差d≠0且a1,a2,a5成等比數(shù)列
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{an}的前n項(xiàng)和為Sn,是否存在正整數(shù)n,使得Sn>60n+800?若存在,求n的最小值,若不存在,說明理由;
(3)若bn=$\frac{{a}_{n}}{2}$且cn=2n•bn,記數(shù)列{cn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,a2為整數(shù),且a3∈[3,5].
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{{a_n}{a_{n+2}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè){an}是正項(xiàng)等比數(shù)列,且a5a6=10,則lga1+lga2+…+lga9+lga10=(  )
A.5B.1+lg5C.2D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)y=f(x)的定義域D,若對任意x1,x2∈D,都有|f(x1)-f(x2)|≤1,則稱函數(shù)y=f(x)為“storm”函數(shù).已知函數(shù)f(x)=x3+bx2+cx+1的圖象為曲線C,直線y=kx-1與曲線C相切于(1,-10).
(1)求f(x)的解析式;
(2)設(shè)0<m≤2,若對x∈[m-2,m],函數(shù)g(x)=$\frac{f(x)}{16m}$為“storm”函數(shù),求實(shí)數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.命題p:0<x<1,命題q:x2<2x,命題p是 q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若y=log56•log67•log78•log89•log910則有(  )
A.y∈(0,1)B.y∈(1,2 )C.y∈(2,3 )D.y=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,PD垂直于底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且AB=2AD=2DC=2PD=4,E為PA的中點(diǎn).
(1)若正視方向與AD平行,作出該幾何體的正視圖并求出正視圖面積;
(2)證明:平面CDE⊥平面PAB.

查看答案和解析>>

同步練習(xí)冊答案