3.設(shè)全集 I={x|x2<9,x∈Z},A={1,2},B={-2,-1,2},則 A∪(∁I B)=(  )
A.{1}B.{1,2}C.{2}D.{0,1,2}

分析 求解一元二次不等式化簡I,再由交、并、補集的混合運算得答案.

解答 解:∵I={x|x2<9,x∈Z}={-2,-1,0,1,2},B={-2,-1,2},
∴∁I B={0,1},又A={1,2},
∴A∪(∁I B)={0,1,2}.
故選:D.

點評 本題考查一元二次不等式的解法,考查交、并、補集的混合運算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow m=(2coswx,-1),\overrightarrow n=(\sqrt{3}sinwx+coswx,2)$,函數(shù)$f(x)=\overrightarrow m•\overrightarrow n+1$,若函數(shù)f(x)圖象的兩個相鄰的對稱軸間的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若△ABC滿足f(A)=1,a=3,BC邊上的中線長為3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.平面內(nèi)有兩定點A,B及動點P,設(shè)命題甲:“|PA|與|PB|之差的絕對值是定值”,命題乙:“點P的軌跡是以A,B為焦點的雙曲線”,那么命題甲是命題乙的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè) (1+i)( x-yi)=2,其中 x,y 是實數(shù),i 為虛數(shù)單位,則 x+y=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線 C1:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1( a>0,b>0),圓 C2:x2+y2-2ax+$\frac{3}{4}$a2=0,若雙曲線C1 的一條漸近線與圓 C2 有兩個不同的交點,則雙曲線 C1 的離心率的范圍是( 。
A.(1,$\frac{{2\sqrt{3}}}{3}$)B.($\frac{{2\sqrt{3}}}{3}$,+∞)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.要得到函數(shù) y=2cos x 的圖象,只需將 y=2sin( x-$\frac{π}{3}$) 的圖象( 。
A.向右平移$\frac{5π}{6}$個單位B.向右平移$\frac{π}{3}$個單位
C.向左平移$\frac{5π}{6}$個單位D.向左平移$\frac{π}{3}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)數(shù)列{an}的前 n 項和為 Sn,已知a1=1,Sn+1=3Sn+1,n∈N?
(1)求數(shù)列{an}的通項公式;
(2)若 bn=$\frac{8n}{{{a_{n+1}}-{a_n}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線m:x=-4,圓M:x2+y2+2x-8=0,P為平面內(nèi)一動點,若點P到圓心M的距離是到直線m距離的一半.
(1)動點P的軌跡是什么曲線?寫出該曲線的標準方程;
(2)設(shè)動點P的軌跡為曲線F,過點E(4,-3)作直線l與曲線F交于C、D兩點,并與直線x-y-1=0相交于點Q,問:$\frac{1}{|EC|}$、$\frac{1}{|EQ|}$、$\frac{1}{|ED|}$是否成等差數(shù)列?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)二面角α-CD-β的大小為45°,A點在平面α內(nèi),B點在CD上,且∠ABC=45°,則AB與平面β所成角的大小為30°.

查看答案和解析>>

同步練習(xí)冊答案