15.已知a>0,b>0,且4a+b-ab=0,則 a+b的最小值為9.

分析 a>0,b>0,且4a+b-ab=0,可得$\frac{4}+\frac{1}{a}$=1,利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:∵a>0,b>0,且4a+b-ab=0,
∴$\frac{4}+\frac{1}{a}$=1,
則 a+b=(a+b)$(\frac{4}+\frac{1}{a})$=5+$\frac{4a}+\frac{a}$≥5+2$\sqrt{\frac{4a}•\frac{a}}$=9,當(dāng)且僅當(dāng)b=2a=6時(shí)取等號(hào).
故答案為:9.

點(diǎn)評(píng) 本題考查了“乘1法”與基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=a(x-1)-lnx(a為實(shí)數(shù)),g(x)=x-1,h(x)=$\left\{\begin{array}{l}g(x),f(x)<g(x)\\ f(x),f(x)≥g(x)\end{array}$.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)=a(x-1)-lnx在點(diǎn)(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)若h(x)=f(x),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在△ABC中,三個(gè)內(nèi)角A、B、C成等差數(shù)列,且cosA=$\frac{2}{3}$,則sinC=(  )
A.$\frac{-2\sqrt{3}+\sqrt{5}}{6}$B.$\frac{2\sqrt{3}+\sqrt{5}}{6}$C.$\frac{2\sqrt{3}-\sqrt{5}}{6}$D.$\frac{-2\sqrt{3}-\sqrt{5}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若x,y滿(mǎn)足$\left\{\begin{array}{l}{x+y≤4}\\{x-2y≥0}\\{x+2y≥4}\end{array}\right.$,則z=2x+y的最小值是( 。
A.$\frac{20}{3}$B.8C.$\frac{14}{3}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.雙曲線E1:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,橢圓E2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線E1有公共的焦點(diǎn),且E1,E2在第一象限和第四象限的交點(diǎn)分別為M,N,弦MN過(guò)F2,則橢圓E2的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{\frac{81}{4}}$+$\frac{{y}^{2}}{\frac{45}{4}}$=1B.$\frac{{x}^{2}}{13}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{7}$=1D.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+alnx-bx,a,b為實(shí)數(shù).
(1)當(dāng)b=0時(shí),求函數(shù)f(x)的值域;
(2)當(dāng)a=b=-1時(shí),若a∈(1,e],求證:對(duì)任意s,t∈[1,a]恒有|f(s)-f(t)|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,點(diǎn)A,B分別是橢圓C的左、右頂點(diǎn),點(diǎn)P是橢圓C上異于A,B兩點(diǎn)的任意一點(diǎn),當(dāng)△PAB為等腰三角形時(shí),則△PAB的面積為2,.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線AP與直線x=4交于點(diǎn)M,直線MB交橢圓C于點(diǎn)Q,試問(wèn):直線PQ是否過(guò)定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo),若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,在三棱錐C-DAB中,E,F(xiàn)分別是AC,BD的中點(diǎn),若EF⊥AB,且向量$\overrightarrow{EF}$與$\overrightarrow{CD}$的夾角為30°,則棱CD與棱AB的關(guān)系是( 。
A.CD=2ABB.CD=ABC.AB=2CDD.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列對(duì)古典概型的說(shuō)法中正確的是(  )
①試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);
②每個(gè)事件出現(xiàn)的可能性相等;
③每個(gè)基本事件出現(xiàn)的可能性相等;
④基本事件總數(shù)為n,隨機(jī)事件A若包含k個(gè)基本事件,則P(A)=$\frac{k}{n}$.
A.②④B.①③④C.①④D.③④

查看答案和解析>>

同步練習(xí)冊(cè)答案