已知函數(shù)f(x)=
2-xx+1
;
(1)判斷函數(shù)f(x)在(-∞,-1)上的單調(diào)性,并給出證明;
(2)是否存在負數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.
分析:(1)先把f(x)化簡,然后用定義給出證明;
(2)由f(x)的單調(diào)性求出f(x)在x∈(-∞,-1)∪(-1,0)上的值域,求出3x在x∈(-∞,-1)∪(-1,0)上的值域,若兩值域交集非空,則存在x0,否則不存在.
解答:解:(1)f(x)=
3
x+1
-1
,∴f(x)在(-∞,-1)上為減函數(shù),
下面用定義給出證明:
設(shè)x1<x2<-1,則f(x1)-f(x2)=
3(x2-x1)
(x1+1)(x2+1)
,
∵x2-x1>0,x1+1<0,x2+1<0,∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴f(x)在(-∞,-1)上為減函數(shù).
(2)∵x0<0時,0<3x0<1
由(1)知,f(x)在(-∞,-1),(-1,+∞)上為減函數(shù),
當x<-1時,f(x)<-1,當-1x<0時,x>2,故當x0<0時,f(x)>2或f(x)<-1,
故不存在負數(shù)x0,使得f(x0)=3x0成立.
點評:本題考查函數(shù)的單調(diào)性及其應(yīng)用,注意體會定義在判斷單調(diào)性中的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實數(shù)a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數(shù)的圖象與x軸有兩個不同的交點;
(2)如果函數(shù)的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案