1.等差數(shù)列{an}中a1=1,a5-a2=6,則a6的值為(  )
A.5B.11C.13D.15

分析 利用等差數(shù)列的通項公式即可得出.

解答 解:設(shè)差數(shù)列{an}的公差為d,∵a1=1,a5-a2=6,∴3d=6,解得d=2.
∴a6=1+2×5=11.
故選:B.

點評 本題考查了等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若f(x)=x3+ax2+bx-a2-7a在x=1處取得極大值10,則$\frac{a}$的值為$-\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)集合A={x|(x-2)(x-3)≥0},集合B={x|x>0},則A∩B=[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)$f(x)=\left\{\begin{array}{l}x,\;0<x≤1\\ 2f(x-1),x>1\end{array}\right.$,則$f(\frac{3}{2})$=1,f(f(3))=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.物體運動方程為$S=\frac{1}{4}{t^4}-3$,則t=2時瞬時速度為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某化妝品商店為促進顧客消費,在“三八”婦女節(jié)推出了“分段折扣”活動,具體規(guī)則如下表:
購買商品金額折扣
消費不超過200元的部分9折
消費超過200元但不超過500元的部分8折
消費超過500元但不超過1000元的部分7折
消費超過1000元的部分6折
例如,某顧客購買了300元的化妝品,她實際只需付:200×0.9+(300-200)×0.8=260(元).為了解顧客的消費情況,隨機調(diào)查了100名顧客,得到如下統(tǒng)計表:
購買商品金額(0,200](200,500](500,1000]1000以上
人數(shù)10403020
(Ⅰ)寫出顧客實際消費金額y與她購買商品金額x之間的函數(shù)關(guān)系式(只寫結(jié)果);
(Ⅱ)估算顧客實際消費金額y不超過180的概率;
(Ⅲ)估算顧客實際消費金額y超過420的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)集合$A=\{\left.x\right|y=\sqrt{2x-{x^2}}\}$,B={y|y=2x,x>0},則A∪B=(  )
A.(1,2]B.[0,+∞)C.[0,1)∪(1,2]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某高校在舉行藝術(shù)類高考招生考試時,對100個考生進行了一項專業(yè)水平考試,考試成績滿分為100分,成績出來后,老師對每個成績段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]的人數(shù)進行了統(tǒng)計,丙得到如圖所示的頻率分布直方圖.
(1)求a的值,并從頻率分布直方圖中求出這些成績的中位數(shù);
(2)為了能從分了解考生情況,對考試成績落在[70,90)內(nèi)的考生采用分層抽樣的方法抽取5名考生.
(i)求在[70,80)與[80,90)內(nèi)各抽取多少名考生;
(ii)如果從這5名中選出兩人進行一段表演,求恰有一名考生來自[80,90)組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列四個類比中,正確得個數(shù)為(  )
(1)若一個偶函數(shù)在R上可導(dǎo),則該函數(shù)的導(dǎo)函數(shù)為奇函數(shù),將此結(jié)論類比到奇函數(shù)的結(jié)論為:若一個奇函數(shù)在R上可導(dǎo),則該函數(shù)的導(dǎo)函數(shù)為偶函數(shù).
(2)若雙曲線的焦距是實軸長的2倍,則此雙曲線的離心率為2.將此結(jié)論類比到橢圓的結(jié)論為:若橢圓的焦距是長軸長的一半,則此橢圓的離心率為$\frac{1}{2}$.
(3)若一個等差數(shù)列的前3項和為1,則該數(shù)列的第2項為$\frac{1}{3}$.將此結(jié)論類比到等比數(shù)列的結(jié)論為:若一個等比數(shù)列的前3項積為1,則該數(shù)列的第2項為1.
(4)在平面上,若兩個正三角形的邊長比為1:2,則它們的面積比為1:4,將此結(jié)論類比到空間中的結(jié)論為:在空間中,若兩個正四面體的棱長比為1:2,則它們的體積比為1:8.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案