3.已知cos(α+β)=1,求證:sin(α+2β)=sinβ.

分析 利用同角三角函數(shù)的基本關(guān)系求得sin(α+β)=0,再根據(jù)sin(α+2β)=sin[(α+β)+β],利用兩角而和的正弦公式,證得等式成立.

解答 證明:∵cos(α+β)=1,∴sin(α+β)=0,
∴sin(α+2β)=sin[(α+β)+β]=sin(α+β)cosβ+cos(α+β)sinβ=0+1•sinβ=sinβ,
∴sin(α+2β)=sinβ成立.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系、兩角而和的正弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若復(fù)數(shù)z=(m2-m-2)+(m+1)i(i為虛數(shù)單位)為純虛數(shù),其中m∈R,則m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖所示的程序框圖中,輸出的S的值是( 。
A.80B.100C.120D.140

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知O是平面上一定點(diǎn),A,B,C是平面上不共線(xiàn)的三個(gè)點(diǎn),動(dòng)點(diǎn)P滿(mǎn)足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ(${\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|cosB}}$+$\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|cosC}}}$),λ∈(0,+∞),則動(dòng)點(diǎn)P的軌跡一定通過(guò)△ABC的(  )
A.重心B.垂心C.外心D.內(nèi)心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,在邊長(zhǎng)為a的正方形內(nèi)有不規(guī)則圖形Ω.向正方形內(nèi)隨機(jī)撒豆子,若撒在圖形Ω內(nèi)和正方形內(nèi)的豆子數(shù)分別為57,100,則圖形Ω面積的估計(jì)值為( 。
A.$\frac{57a}{100}$B.$\frac{100a}{57}$C.$\frac{57{a}^{2}}{100}$D.$\frac{100{a}^{2}}{57}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)實(shí)數(shù)x,y滿(mǎn)足$\left\{\begin{array}{l}x-y≥0\\ x+y≤1\\ x+2y≥1\end{array}$,則z=3x-4y的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.拋物線(xiàn)x2+y=0的焦點(diǎn)坐標(biāo)為(0,-$\frac{1}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知△ABC的三個(gè)頂點(diǎn)分別為A(1,2),B(-3,4),C(2,-6),求:
(1)邊BC的垂直平分線(xiàn)的方程;
(2)AC邊上的中線(xiàn)BD所在的直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.角θ的終邊過(guò)點(diǎn)P(3t,4t)(t>0),則sinθ=$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案