7.執(zhí)行如圖所示的程序框圖,輸出S的值為( 。
A.-$\frac{31}{15}$B.-$\frac{7}{5}$C.-$\frac{31}{17}$D.-$\frac{21}{17}$

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)計算并輸出變量S的值,模擬程序的運行,不難得到輸出結(jié)果.

解答 解:模擬程序的運行,可得
i=0,S=1
滿足條件i<4,執(zhí)行循環(huán)體,i=1,S=$\frac{1}{3}$
滿足條件i<4,執(zhí)行循環(huán)體,i=2,S=-$\frac{1}{7}$
滿足條件i<4,執(zhí)行循環(huán)體,i=3,S=-$\frac{9}{13}$
滿足條件i<4,執(zhí)行循環(huán)體,i=4,S=-$\frac{31}{17}$
不滿足條件i<4,退出循環(huán),輸出S的值為-$\frac{31}{17}$.
故選:C.

點評 根據(jù)流程圖(或偽代碼)寫程序的運行結(jié)果,是算法這一模塊最重要的題型,其處理方法是:①分析流程圖(或偽代碼),從流程圖(或偽代碼)中即要分析出計算的類型,又要分析出參與計算的數(shù)據(jù)(如果參與運算的數(shù)據(jù)比較多,也可使用表格對數(shù)據(jù)進(jìn)行分析管理),②建立數(shù)學(xué)模型,根據(jù)第一步分析的結(jié)果,選擇恰當(dāng)?shù)臄?shù)學(xué)模型,③解模,本題屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.${8^{-\frac{1}{3}}}+{log_3}$tan210°=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.微信是現(xiàn)代生活進(jìn)行信息交流的重要工具,隨機對使用微信的60人進(jìn)行了統(tǒng)計,得到如下數(shù)據(jù)統(tǒng)計表,每天使用微信時間在兩小時以上的人被定義為“微信達(dá)人”,不超過兩小時的人被定義為“非微信達(dá)人”.已知“非微信達(dá)人”與“微信達(dá)人”人數(shù)比恰為3:2.
(Ⅰ)確定x,y,p,q的值,并補全頻率分布直方圖;
(Ⅱ)為進(jìn)一步了解使用微信對自己的日常工作和生活是否有影響,從“非微信達(dá)人”和“微信達(dá)人”60人中用分層抽樣的方法確定5人,若需從這5人中隨機選取2人進(jìn)行問卷調(diào)查,求選取的2人中恰有1人為“微信達(dá)人”的概率. 
使用微信時間
(單位:小時)
頻數(shù)頻率
(0,0.5]30.05
(0.5,1]xp
(1,1.5]90.15
(1.5,2]150.25
(2,2.5]180.30
(2.5,3]yq
合計601.00

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在國際風(fēng)帆比賽中,成績以低分為優(yōu)勝,比賽共11場,并以最佳的9場成績計算最終的名次.在一次國際風(fēng)帆比賽中,前7場比賽結(jié)束后,排名前8位的選手積分如表:
運動員比賽場次 總分
1234567891011
 A 32 2 2 6     21
 B 110     28 
 C 9    28 
 D 7    35 
 E12     42 
 F 4 11    47 
 G 1012 12 12 10     71 
 H12 12 12  7 12 12    73
(1)根據(jù)表中的比賽數(shù)據(jù),比較A與B的成績及穩(wěn)定情況;
(2)從前7場平均分低于6.5的運動員中,隨機抽取2個運動員進(jìn)行興奮劑檢查,求至少1個運動員平均分不低于5分的概率.
(3)請依據(jù)前7場比賽的數(shù)據(jù),預(yù)測冠亞軍選手,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,則輸出S的值為(  )
A.40B.38C.32D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)等比數(shù)列{an}的前n項和為Sn,若S3,S9,S6成等差數(shù)列.且a2+a5=4,則a8的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,則輸出的s=( 。
A.-1008B.-1007C.1010D.1011

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$f(x)=-\frac{1}{2}{x^2}+6x-8lnx$在[m,m+1]上不單調(diào),則實數(shù)m的取值范圍是( 。
A.(1,2)B.(3,4)C.(1,2]∪[3,4)D.(1,2)∪(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題正確的是( 。
A.若直線l上有無數(shù)個點不在平面α內(nèi),則l∥α
B.若直線l與平面α有兩個公共點,則直線l在平面內(nèi)
C.若直線l與平面α相交,則l與平面α內(nèi)的任意直線都是異面直線
D.平行于同一個平面的兩條直線平行

查看答案和解析>>

同步練習(xí)冊答案