【題目】定義:如果數(shù)列的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱(chēng)為三角形”數(shù)列對(duì)于“三角形”數(shù)列,如果函數(shù)使得仍為一個(gè)三角形”數(shù)列,則稱(chēng)是數(shù)列的“保三角形函數(shù)”.
(1)已知是首項(xiàng)為2,公差為1的等差數(shù)列,若,是數(shù)列的保三角形函數(shù)”,求的取值范圍;
(2)已知數(shù)列的首項(xiàng)為2019,是數(shù)列的前項(xiàng)和,且滿(mǎn)足,證明是“三角形”數(shù)列;
(3)求證:函數(shù),是數(shù)列1,,的“保三角形函數(shù)”的充要條件是,.
【答案】(1);(2)見(jiàn)解析;(3)見(jiàn)解析.
【解析】
(1)先由條件得是三角形數(shù)列,再利用,是數(shù)列的“保三角形函數(shù)”,得到,解得的取值范圍;
(2)先利用條件求出數(shù)列的通項(xiàng)公式,再證明其滿(mǎn)足“三角形”數(shù)列的定義即可;
(3)根據(jù)函數(shù),,是數(shù)列1,,的“保三角形函數(shù)”,可以得到①1,,是三角形數(shù)列,所以,即,②數(shù)列中的各項(xiàng)必須在定義域內(nèi),即,③,,是三角形數(shù)列;結(jié)論為在利用,是單調(diào)遞減函數(shù),就可求出對(duì)應(yīng)的范圍,即可證明.
(1)解:顯然,對(duì)任意正整數(shù)都成立,即是三角形數(shù)列,
因?yàn)?/span>,顯然有,
由得,解得,
所以當(dāng)時(shí),是數(shù)列的“保三角形函數(shù)”;
(2)證:由,
當(dāng)時(shí),,∴,∴,
當(dāng)時(shí),即,解得,∴,
∴數(shù)列是以2019為首項(xiàng),以為公比的等比數(shù)列,
∴,
顯然,因?yàn)?/span>,
所以是“三角形”數(shù)列;
(3)證:函數(shù),是數(shù)列1,,的“保三角形函數(shù)”,必須滿(mǎn)足三個(gè)條件:
①1,,是三角形數(shù)列,所以,即;
②數(shù)列中的各項(xiàng)必須在定義域內(nèi),即;
③,,是三角形數(shù)列,
由于,是單調(diào)遞減函數(shù),所以,解得,
所以函數(shù),是數(shù)列1,,的“保三角形函數(shù)”的充要條件是,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱ABC—A1B1C1中,CA=CB=4,,E,F(xiàn)分別為AC,CC1的中點(diǎn),則直線(xiàn)EF與平面AA1B1B所成的角是
A. 30° B. 45° C. 60° D. 90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若存在正數(shù)x,y,使得,其中e為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)的取值范圍是_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為常數(shù),且),且數(shù)列是首項(xiàng)為,公差為的等差數(shù)列.
(1)求證:數(shù)列是等比數(shù)列;
(2)若,當(dāng)時(shí),求數(shù)列的前項(xiàng)和的最小值;
(3)若,問(wèn)是否存在實(shí)數(shù),使得是遞增數(shù)列?若存在,求出的范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)x,y滿(mǎn)足x3<y3,則下列不等式中恒成立的是( 。
A. ()x>()y B. ln(x2+1)>ln(y2+1)
C. D. tanx>tany
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校興趣小組在如圖所示的矩形區(qū)域內(nèi)舉行機(jī)器人攔截挑戰(zhàn)賽,在處按方向釋放機(jī)器人甲,同時(shí)在處按某方向釋放機(jī)器人乙,設(shè)機(jī)器人乙在處成功攔截機(jī)器人甲,若點(diǎn)在矩形區(qū)城內(nèi)(包含邊界),則挑戰(zhàn)成功,否則挑戰(zhàn)失敗,已知米,為中點(diǎn),機(jī)器人乙的速度是機(jī)器人甲的速度的2倍,比賽中兩機(jī)器人均按勻速直線(xiàn)遠(yuǎn)動(dòng)方式行進(jìn).
(1)如圖建系,求的軌跡方程;
(2)記與的夾角為,,如何設(shè)計(jì)的長(zhǎng)度,才能確保無(wú)論的值為多少,總可以通過(guò)設(shè)置機(jī)器人乙的釋放角度使之挑戰(zhàn)成功?
(3)若與的夾角為,足夠長(zhǎng),則如何設(shè)置機(jī)器人乙的釋放角度,才能挑戰(zhàn)成功?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且asinB=bsin(A+).
(1)求A;
(2)若b,a,c成等差數(shù)列,△ABC的面積為2,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)棱錐M-ABCD的底面是正方形,且MA=MD,MA⊥AB.如果△AMD的面積為1,試求能夠放入這個(gè)棱錐的最大球的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在測(cè)量一根新彈簧的勁度系數(shù)時(shí),測(cè)得了如下的結(jié)果:
所掛重量()(x) | 1 | 2 | 3 | 5 | 7 | 9 |
彈簧長(zhǎng)度()(y) | 11 | 12 | 12 | 13 | 14 | 16 |
(1)請(qǐng)?jiān)谙聢D坐標(biāo)系中畫(huà)出上表所給數(shù)據(jù)的散點(diǎn)圖;
(2)若彈簧長(zhǎng)度與所掛物體重量之間的關(guān)系具有線(xiàn)性相關(guān)性,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線(xiàn)性回歸方程;
(3)根據(jù)回歸方程,求掛重量為的物體時(shí)彈簧的長(zhǎng)度.所求得的長(zhǎng)度是彈簧的實(shí)際長(zhǎng)度嗎?為什么?
注:本題中的計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位.
(參考公式:,)
(參考數(shù)據(jù):,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com