【題目】函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù)g(x)=log (x2+ bx+ )的單調(diào)遞增區(qū)間為( )
A.[﹣2,+∞)
B.(﹣∞,﹣2)
C.(3,+∞)
D.[3,+∞)
【答案】B
【解析】解:由圖象得函數(shù)過原點(diǎn),則f(0)=d=0,
函數(shù)的導(dǎo)數(shù)f′(x)=3x2+2bx+c,
x=﹣2和x=3是函數(shù)f(x)的極值點(diǎn),
則x=﹣2和x=3是方程f′(x)=3x2+2bx+c=0的兩個根,
則 ,即b=﹣ ,c=﹣18,
則g(x)=log (x2+ bx+ )=log (x2﹣x﹣6),
設(shè)t=x2﹣x﹣6,則函數(shù)y=log t為減函數(shù),
由t=x2﹣x﹣6>0得x>3或x<﹣2,
要求g(x)的單調(diào)遞增區(qū)間,即求函數(shù)t=x2﹣x﹣6的單調(diào)遞減區(qū)間,
∵t=x2﹣x﹣6的單調(diào)遞減區(qū)間為(﹣∞,﹣2),
∴函數(shù)g(x)=log (x2+ bx+ )的單調(diào)遞增區(qū)間為(﹣∞,﹣2),
故選:B
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜三棱柱ABC﹣A1B1C1的底面是直角三角形,∠ACB=90°,點(diǎn)B1在底面內(nèi)的射影恰好是BC的中點(diǎn),且BC=CA=2.
(1)求證:平面ACC1A1⊥平面B1C1CB;
(2)若二面角B﹣AB1﹣C1的余弦值為 ,求斜三棱柱ABC﹣A1B1C1的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)選派7名隊(duì)員代表本區(qū)參加全市青少年圍棋錦標(biāo)賽,其中3名來自A學(xué)校且1名為女棋手,另外4名來自B學(xué)校且2名為女棋手.從這7名隊(duì)員中隨機(jī)選派4名隊(duì)員參加第一階段的比賽.
(1)求在參加第一階段比賽的隊(duì)員中,恰有1名女棋手的概率;
(2)設(shè)X為選出的4名隊(duì)員中A、B兩校人數(shù)之差的絕對值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從身高在[100,110),[110,120),[120,130)三組內(nèi)的學(xué)生中,用分層抽樣的方法選取28人參加一項(xiàng)活動,則從身高在[120,130)內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的離心率為 ,F(xiàn)1 , F2分別為橢圓的左右焦點(diǎn),P為橢圓上任意一點(diǎn),△PF1F2的周長為 ,直線l:y=kx+m(k≠0)與橢圓C相交于A,B兩點(diǎn). (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l與圓x2+y2=1相切,過橢圓C的右焦點(diǎn)F2作垂直于x軸的直線,與橢圓相交于M,N兩點(diǎn),與線段AB相交于一點(diǎn)(與A,B不重合).求四邊形MANB面積的最大值及取得最大值時直線l的方程;
(Ⅲ)若|AB|=2,試判斷直線l與圓x2+y2=1的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知圓C的圓心坐標(biāo)為(2,0),半徑為 ,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.,直線l的參數(shù)方程為: (t為參數(shù)).
(1)求圓C和直線l的極坐標(biāo)方程;
(2)點(diǎn)P的極坐標(biāo)為(1, ),直線l與圓C相交于A,B,求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)樣本數(shù)據(jù)x1 , x2 , …,x2017的方差是4,若yi=2xi﹣1(i=1,2,…,2017),則y1 , y2 , …y2017的方差為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程選講]
在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1 , C2的極坐標(biāo)方程分別為ρ=2sinθ,ρcos(θ﹣ )= .
(Ⅰ)求C1和C2交點(diǎn)的極坐標(biāo);
(Ⅱ)直線l的參數(shù)方程為: (t為參數(shù)),直線l與x軸的交點(diǎn)為P,且與C1交于A,B兩點(diǎn),求|PA|+|PB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的五面體中,面ABCD為直角梯形,∠BAD=∠ADC= ,平面ADE⊥平面ABCD,EF=2DC=4AB=4,△ADE是邊長為2的正三角形.
(Ⅰ)證明:BE⊥平面ACF;
(Ⅱ)求二面角A﹣BC﹣F的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com