已知函數(shù)y=f(x)是R上的奇函數(shù),且當(dāng)x≥0時(shí)f(x)=x2-2x,則f(x)在(-∞,0]上的解析式是( 。
A、f(x)=x2-2x
B、f(x)=-x2-2x
C、f(x)=-x2+2x
D、f(x)=x2+2x
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意設(shè)x≥0利用已知的解析式求出f(-x)=x2+2x,再由f(x)=-f(-x),求出x>0時(shí)的解析式.
解答: 解:由題意可得:設(shè)x<0,則-x>0;
∵當(dāng)x≥0時(shí),f(x)=x2-2x,
∴f(-x)=x2+2x,
因?yàn)楹瘮?shù)f(x)是奇函數(shù),
所以f(-x)=-f(x),
所以x<0時(shí)f(x)=-x2-2x,
故選B.
點(diǎn)評(píng):本題的考點(diǎn)是利用函數(shù)的奇偶性求函數(shù)的解析式(即利用f(x)和f(-x)的關(guān)系),把x的范圍轉(zhuǎn)化到已知的范圍內(nèi)求對(duì)應(yīng)的解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示是三棱錐D-ABC的三視圖,其中△DAC、△DAB、△BAC都是直角三角形,則三棱錐外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}是公差為負(fù)數(shù)的等差數(shù)列,若a10+a11<0,且a10•a11<0,它的前n項(xiàng)和為Sn,則使Sn>0的n的最大值為( 。
A、11B、17C、19D、21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知an=logn+1(n+2)(n∈N*),觀察下列運(yùn)算:
a1•a2=log23•log34=
lg3
lg2
lg4
lg3
=2;
a1•a2•a3•a4•a5•a6=log23•log34•…•log78=
lg3
lg2
lg4
lg3
•…•
lg8
lg7
=3;….
若a1•a2•a3•…•ak(k∈N*)為整數(shù),則稱k為“企盼數(shù)”,試確定當(dāng)a1•a2•a3•…•ak=2 014時(shí),“企盼數(shù)”k為( 。
A、22014+2
B、22014
C、22014-2
D、22014-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列屬于相關(guān)關(guān)系的是( 。
A、利息與利率
B、居民收入與儲(chǔ)蓄存款
C、電視機(jī)產(chǎn)量與蘋果產(chǎn)量
D、正方形的邊長(zhǎng)與面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b為兩條直線,α,β為兩個(gè)平面,下列命題中正確的是(  )
A、若α∥b,β∥b,則α∥β
B、若α∥a,α∥b,則a∥b
C、若a⊥α,b⊥β,則α∥β
D、若a⊥α,a⊥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)與g(x)是定義在R上的兩個(gè)可導(dǎo)函數(shù),若f(x)與g(x)滿足f′(x)=g′(x),則( 。
A、f(x)=g(x)
B、f(x)-g(x)為常數(shù)函數(shù)
C、f(x)=g(x)=0
D、f(x)+g(x)為常數(shù)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果函數(shù)f(x)=sin(
π
2
x+θ)(0<θ<π)是最小正周期為T的偶函數(shù),那么(  )
A、T=4π,θ=
π
2
B、T=4,θ=
π
2
C、T=4,θ=
π
4
D、T=4π,θ=
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=cosπx的圖象與函數(shù)y=(
1
2
|x-1|(-3≤x≤5)的圖象所有交點(diǎn)的橫坐標(biāo)之和等于( 。
A、4B、6C、8D、10

查看答案和解析>>

同步練習(xí)冊(cè)答案