精英家教網 > 高中數學 > 題目詳情
已知函數.
(Ⅰ)求的單調區(qū)間;
(Ⅱ)設,若對任意,均存在,使得,求的取值范圍。
解:(Ⅰ).
①當時,由于,故,
所以,的單調遞增區(qū)間為
②當時,由,得.
在區(qū)間上,,在區(qū)間,
所以,函數的單調遞增區(qū)間為,單調遞減區(qū)間為.
(Ⅱ)由已知,轉化為.

由(Ⅱ)知,當時,上單調遞增,值域為,故不符合題意.
(或者舉出反例:存在,故不符合題意.)
時,上單調遞增,在上單調遞減,
極大值即為最大值,,
所以
解得.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

已知函數,則(    )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數f(x)=x3+ax2+ax-2(a∈R),
(1)若函數f(x)在區(qū)間(-∞,+∞)上為單調增函數,求實數a的取值范圍;
(2)設A(x1,f(x1))、B(x2,f(x2))是函數f(x)的兩個極值點,若直線AB的斜率不小于-,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數f(x)=-x (e為自然對數的底數).
(Ⅰ)求f(x)的最小值;
(Ⅱ)不等式f(x)>ax的解集為P,若M={x|≤x≤2}且M∩P≠,求實數a的
取值范圍;
(Ⅲ)已知n∈N﹡,且(t為常數,t≥0),是否存在等比數列{},使得b1+b2+…?若存在,請求出數列{}的通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若曲線存在斜率為的切線,則實數的取值范圍是        .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

利用定積分的幾何意義,求

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在函數的圖象上,其切線的傾斜角小于的點中,坐標為整數的點的個是          
A.3B.2 C.1D.0

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若函數,若, 則
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

,若,則____________.

查看答案和解析>>

同步練習冊答案