設(shè)f(x)=
-log3(x+1),x>6
3x-6-1,x≤6
,滿足f(n)=-
8
9
,則f(n+4)=
 
考點(diǎn):分段函數(shù)的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)分段函數(shù)的表達(dá)式,分別討論n的取值,即可得到結(jié)論.
解答: 解:若n>6,則f(n)=-log3(n+1)=-
8
9
,
即log3(n+1)=
8
9
不成立,
若n≤6,由f(n)=3n-6-1=-
8
9
,即3n-6=
1
9
,即n-6=-2,
解得n=4,則f(n+4)=f(8)=-log3(8+1)=-log39=-2,
故答案為:-2
點(diǎn)評(píng):本題主要考查函數(shù)值的計(jì)算,根據(jù)分段函數(shù)的表達(dá)式分別討論,結(jié)合指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|-2≤x≤4},B={x|m-3≤x≤m}.
(1)若實(shí)數(shù)m=5,求A∩B;
(2)若A⊆(∁RB),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

25
9
0.5+(
27
64
 -
2
3
+(0.1)-2-
31
9
(π)0+lg2+lg5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A={(x,y)|(x-1)2+(y-2)2}≤
5
4
},B={(x,y)||x-1|+2|y-2|≤a},若A⊆B,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|y=
2
-2x
},B={y|y=
3-2x-x2
},則(∁RA)∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=4sin(2x-
π
3
)+1,條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p不是q的充分條件,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從正方形四個(gè)頂點(diǎn)及其中心這5個(gè)點(diǎn)中,任取2個(gè)點(diǎn),則這2個(gè)點(diǎn)的距離小于該正方形邊長(zhǎng)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a,b,c滿足2a+b+c=0,a2+b2+c2=1,則a的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=4sin(2x+
π
6
)(x∈[0,
6
])的圖象與直線y=m有三個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,x3(x1<x2<x3),那么x1+2x2+x3的值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案