4.已知數(shù)列{an}的前n項(xiàng)和為Sn=n2+4n+1,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式; 
(Ⅱ)設(shè)bn=2n-1•(an-1),求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (Ⅰ)首先根據(jù)Sn=n2+4n+1求出a1的值,然后利用an=Sn-Sn-1求出當(dāng)n>2時(shí),an的表達(dá)式,然后驗(yàn)證a1的值,最后寫(xiě)出an的通項(xiàng)公式.
(Ⅱ)根據(jù)錯(cuò)位想加法即可求出前n項(xiàng)和.

解答 解:(Ⅰ)∵Sn=n2+4n+1,a1=S1=12+4+1=6,
∴an=Sn-Sn-1=n2+4n+1-[(n-1)2+4(n-1)+1]=2n+3(n>1),
∵當(dāng)n=1時(shí),a1=5≠6,
∴an=$\left\{\begin{array}{l}{6,n=1}\\{2n+3,n≥2,n∈N}\end{array}\right.$,
(Ⅱ)當(dāng)n=1時(shí),b1=21-1•(a1-1)=5,
當(dāng)n≥2時(shí),bn=2n-1•(an-1)=2n-1•(2n+2)=(n+1)2n,
則數(shù)列{bn}的前n項(xiàng)和Tn=5+3×22+4×23+5×24+…+(n+1)•2n
2Tn=10+3×23+4×24+5×25+…+n•2n+(n+1)•2n+1,
兩式相減得-Tn=-5+3×22+23+24+…+2n-(n+1)•2n+1=1+2+22+23+24+…+2n-(n+1)•2n+1=$\frac{1×(1-{2}^{n+1})}{1-2}$-(n+1)•2n+1=-1-n•2n+1
即Tn=1+n•2n+1,
綜上所述Tn=$\left\{\begin{array}{l}{5,n=1}\\{1+n•{2}^{n+1},n≥2,n∈N}\end{array}\right.$

點(diǎn)評(píng) 本題主要考查數(shù)列通項(xiàng)公式的求解和數(shù)列求和,要求熟練掌握錯(cuò)位相減法.考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列函數(shù)中,在定義域內(nèi)是單調(diào)遞增函數(shù)的是( 。
A.y=|x|B.$y=-\frac{1}{x}$C.y=2-xD.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)f(x)=$\frac{2}{\sqrt{3x+1}}$的定義域?yàn)椋?$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.關(guān)于函數(shù)f(x)=sinx(sinx-cosx)的有關(guān)性質(zhì),下列敘述正確的是( 。
A.f(x)的最小正周期為2πB.f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]內(nèi)單調(diào)遞增
C.f(x)的圖象關(guān)于(-$\frac{π}{2}$,0)對(duì)稱(chēng)D.f(x)的圖象關(guān)于x=$\frac{π}{8}$對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知二次函數(shù)f(x)=ax2+bx+c,其中a>0.
(1)若方程f(x)+2x=0有兩個(gè)實(shí)根x1=1,x2=3,且方程f(x)+6a=0有兩個(gè)相等的根,求f(x)的解析式; 
(2)若f(x)的圖象與x軸交于A(-3,0)B(m,0)兩點(diǎn),且當(dāng)-1≤x≤0時(shí),f(x)≤0恒成立.求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在扇形AOB中,$\widehat{AB}$的長(zhǎng)為π,半徑為2,則扇形的內(nèi)切圓半徑為2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓C;$\frac{x^2}{4}+\frac{y^2}$=1(0<b<4)的左右頂點(diǎn)分別為A、B,M為橢圓上的任意一點(diǎn),A關(guān)于M的對(duì)稱(chēng)點(diǎn)為P,如圖所示,
(1)若M的橫坐標(biāo)為$\frac{1}{2}$,且點(diǎn)P在橢圓的右準(zhǔn)線上,求b的值;
(2)若以PM為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.定義在R上的函數(shù)f(x)滿足:f(m+n)=f(m)+f(n)-2對(duì)任意m、n∈R恒成立.當(dāng)x>0時(shí),f(x)>2.
(1)求證:f(x)是R上的單調(diào)遞增函數(shù);
(2)若f(-3)=-7,且不等式f(t2+at-a)≥-7對(duì)任意t∈[-2,2]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.給定下列四個(gè)命題:
①若$\frac{1}{a}$<$\frac{1}$<0,則b2>a2;
②已知直線l,平面α,β為不重合的兩個(gè)平面,若l⊥α,且α⊥β,則l∥β;
③若-1,a,b,c,-16成等比數(shù)列,則b=-4;
④三棱錐的四個(gè)面可以都是直角三角形.
其中真命題編號(hào)是①③④(寫(xiě)出所有真命題的編號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案