如圖程序框圖表示求
1
6+
1
6+
1
6+
1
6+
1
6+
1
6+
1
6
的值,現(xiàn)將程序框圖補(bǔ)充完整,再根據(jù)程序框圖寫(xiě)出程序.
考點(diǎn):程序框圖
專(zhuān)題:圖表型,算法和程序框圖
分析:執(zhí)行程序框圖,依次寫(xiě)出每次循環(huán)得到的x,i的值,當(dāng)i=6時(shí),得到所求的值,i=7時(shí)應(yīng)該退出,故判斷框內(nèi)應(yīng)為:i≤7.判定循環(huán)的結(jié)構(gòu),然后選擇對(duì)應(yīng)的循環(huán)語(yǔ)句,對(duì)照流程圖進(jìn)行逐句寫(xiě)成語(yǔ)句即可.
解答: 解:執(zhí)行程序框圖,有
i=1時(shí),x=
1
6+
1
6
;
i=2時(shí),x=
1
6+
1
6+
1
6
;

i=6時(shí),x=
1
6+
1
6+
1
6+
1
6+
1
6+
1
6+
1
6
;
i=7時(shí),此時(shí)應(yīng)該退出循環(huán),輸出x的值,故判斷框內(nèi)應(yīng)為:i≤7.
程序如下:
x=
1
6

i=1
WHILE  i<=7
 x=
1
6+x

 i=i+1
 WEND
 PRINT x
END
點(diǎn)評(píng):本題主要考查了將當(dāng)型循環(huán)結(jié)構(gòu)的流程圖轉(zhuǎn)化成算法語(yǔ)句,考察了程序框圖和算法,屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0且a≠1,函數(shù)在y=loga(2x-3)+
2
的圖象恒過(guò)定點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
(x+1)ln(x+1)

(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)是否存在實(shí)數(shù)m,使不等式
1
x+1
ln2>mln(x+1)在-1<x<0時(shí)恒成立?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(Ⅲ)已知正整數(shù)列{cn}中,(Cn)(n+1)2=e
1
f(n)
(n∈N*),求數(shù)列{cn}
中的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是橢圓
x2
16
+
y2
7
=1上的動(dòng)點(diǎn),M為過(guò)P且垂直于x軸的直線上的點(diǎn),
|OP|
|OM|
=λ.求點(diǎn)M的軌跡方程,并說(shuō)明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將等腰直角三角板ADC與一個(gè)角為30°的直角三角板ABC拼在一起組成如圖所示的平面四邊形
ABCD,其中∠DAC=45°,∠B=30°.若
DB
=x
DA
+y
DC
,則xy的值是(  )
A、2
3
+1
B、
3
+3
C、2
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2+a7+a12=60,則S13的值是(  )
A、130B、260
C、20D、150

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙C1的方程為x2+y2=1,⊙C2的方程為(x-2)2+(y-2)2=5,求過(guò)點(diǎn)P(0,1)與⊙C1、C2截得的弦長(zhǎng)相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)O(0,0),A(2,1),B(1,-3),C(-2,1),t∈R.
(1)若(
AB
-t
OA
)∥
OC
,求t的值;
(2)求|
OC
+t
OB
|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)f(x)對(duì)定義域的任意x滿足:f(2-x)=f(x),且當(dāng)x∈[0,1)時(shí),f(x)=ln(1-x)給出下列四個(gè)命題:
①函數(shù)f(x)的周期為2;
②函數(shù)f(x)的最大值為0;
③當(dāng)x∈(1,2]時(shí),f(x)=ln(x-1);
④函數(shù)f(x)在每個(gè)區(qū)間[2k,2k+1),k∈z上單調(diào)遞減.
其中正確的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案