將等腰直角三角板ADC與一個角為30°的直角三角板ABC拼在一起組成如圖所示的平面四邊形
ABCD,其中∠DAC=45°,∠B=30°.若
DB
=x
DA
+y
DC
,則xy的值是( 。
A、2
3
+1
B、
3
+3
C、2
D、2
3
考點:向量在幾何中的應(yīng)用
專題:綜合題,平面向量及應(yīng)用
分析:不妨取DA=1,則DC=1,AC=
2
,AB=2
2
,BC=
6
.可得xB=DA+ABcos75°,yB=ABsin75°,再利用共面向量基本定理即可得出.
解答: 解:如圖所示,
不妨取DA=1,則DC=1,AC=
2
,AB=2
2
,BC=
6

∴xB=DA+ABcos75°=1+2
2
×
6
-
2
4
=
3
,yB=ABsin75°=
3
+1.
∴B(
3
3
+1).
DB
=
3
DA
+(
3
+1)
DC

∴x=
3
,y=
3
+1,
∴xy=3+
3

故選:B.
點評:本題考查了共面向量基本定理、含30°與45°角的直角三角形的性質(zhì),考查了推理能力和計算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

平面α與平面β平行的條件可以是( 。
A、α內(nèi)有無窮多條直線與β平行
B、直線a∥α,a∥β
C、直線a?α,直線b?β,且a∥β,b∥α
D、α內(nèi)的任何直線都與β平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足na1+(n-1)a2+…+2an-1+an=(
2
3
n+(
2
3
n-1+…+
2
3
,數(shù)列{an}的前n項和為Sn,設(shè)bn=n•Sn
(1)求{an}的通項公式;
(2)求b1+b2+…+bn的值;
(3)是否存在正整數(shù)k,使得對任意的n∈N*都有bn≤bk成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱椎P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(1)求證:BD⊥平面PAC;
(2)若PA=AB,求PC與平面PAB所成角的余弦值;
(3)當二面角B-PC-D為直二面角時,求PA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
25
+
y2
16
=1上的長軸長是( 。
A、5B、4C、10D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖程序框圖表示求
1
6+
1
6+
1
6+
1
6+
1
6+
1
6+
1
6
的值,現(xiàn)將程序框圖補充完整,再根據(jù)程序框圖寫出程序.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三棱錐S-ABC的4個頂點和6條棱的中點共有10個點,其中4點共面有m組,從m組中任取一組,取到含點S組的概率等于( 。
A、
10
23
B、
10
21
C、
11
23
D、
5
11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(α)=
sin(5π-α)cos(2π-α)
cos(-π-α)tan(3π-α)
,則f(-
31
3
π
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知常數(shù)a>0,函數(shù)g(x)=
x
x+1
,h(x)=
1
x+a
,且f(x)=g(x)•h(x).
(1)若a=1,并設(shè)函數(shù)f(x)的定義域是[1,2],求函數(shù)f(x)的值域;
(2)對于給定的常數(shù)a,是否存在實數(shù)t,使得g(t)=h(t)成立?若存在,求出這樣的所有的t的值,若不存在,說明理由.
(3)若a>1,問是否存在常數(shù)a的值,使函數(shù)f(x)的定義域是[1,a],值域為[
1
2(a+1)
,
1
a2
]?若存在,求出這樣a的值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案