【題目】經(jīng)觀測(cè),某公路段在某時(shí)段內(nèi)的車流量y(千輛/小時(shí))與汽車的平均速度v(千/小時(shí))之間有函數(shù)關(guān)系:
(1)在該時(shí)段內(nèi),當(dāng)汽車的平均速度v為多少時(shí)車流量y最大?最大車流量為多少?(精確到0.01千輛);
(2)為保證在該時(shí)段內(nèi)車流量至少為10千輛/小時(shí),則汽車的平均速度應(yīng)控制在什么范圍內(nèi)?
【答案】
(1)解:函數(shù)可化為
當(dāng)且僅當(dāng)v=40時(shí),取“=”,即 千輛,等式成立
(2)解:要使該時(shí)段內(nèi)車流量至少為10千輛/小時(shí),即使 ,
即v2﹣89v+1600≤0v∈[25,64]
【解析】(1)將已知函數(shù)化簡(jiǎn),從而看利用基本不等式求車流量y最大值;(2)要使該時(shí)段內(nèi)車流量至少為10千輛/小時(shí),即使 ,解之即可得汽車的平均速度的控制范圍
【考點(diǎn)精析】本題主要考查了基本不等式在最值問題中的應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握用基本不等式求最值時(shí)(積定和最小,和定積最大),要注意滿足三個(gè)條件“一正、二定、三相等”才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象在處的切線過點(diǎn), .
(1)若,求函數(shù)的極值點(diǎn);
(2)設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,證明: .(提示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=1﹣ ,g(x)=ln(ax2﹣3x+1),若對(duì)任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,則實(shí)數(shù)a的最大值為( )
A.2
B.
C.4
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC—A1B1C1的側(cè)面AA1B1B為正方形,側(cè)面BB1C1C為菱形,∠CBB1=60°,AB⊥B1C.
(1)求證:平面AA1B1B⊥平面BB1C1C;
(2)若AB=2,求三棱柱ABC—A1B1C1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐的底面是梯形,且, 平面, 是中點(diǎn), .
(Ⅰ)求證: 平面;
(Ⅱ)若, ,求直線與平面所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>,并且滿足,且,當(dāng)時(shí),.
(1)求的值;
(2)判斷函數(shù)的奇偶性,并給出證明;
(3)如果,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
設(shè)函數(shù)f(x)=x2-x-15,且|x-a|<1,
(1)解不等式;
(2)求證:|f(x)-f(a)|<2(|a|+1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點(diǎn), , 分別為橢圓的右頂點(diǎn)、上頂點(diǎn)和右焦點(diǎn),且.
(1)求橢圓的方程;
(2)已知直線: 被圓: 所截得的弦長(zhǎng)為,若直線與橢圓交于, 兩點(diǎn),求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com