3.三個(gè)人獨(dú)立破譯一密碼,他們能獨(dú)立破譯的概率分別是$\frac{1}{5}$、$\frac{2}{5}$、$\frac{1}{2}$,則此密碼被破譯的概率為( 。
A.$\frac{1}{25}$B.$\frac{6}{25}$C.$\frac{19}{25}$D.$\frac{24}{25}$

分析 先求出他們都不能譯出的概率,用1減去此值,即得該密碼被破譯的概率.

解答 解:他們不能譯出的概率分別為1-$\frac{1}{5}$、1-$\frac{2}{5}$、1-$\frac{1}{2}$,
則他們都不能譯出的概率為 (1-$\frac{1}{5}$)(1-$\frac{2}{5}$)(1-$\frac{1}{2}$)=$\frac{6}{25}$,
故則該密碼被破譯的概率是 1-$\frac{6}{25}$=$\frac{19}{25}$,
故選:C.

點(diǎn)評(píng) 本題主要考查等可能事件的概率,所求的事件的概率等于用1減去它的對(duì)立事件概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=2,AC=2,BC=2$\sqrt{2}$,AA1=2,點(diǎn)D,E分別為棱BC,A1C1的中點(diǎn).
(Ⅰ)求證:DF∥平面ABB1A1
(Ⅱ)求二面角B-AB1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.根據(jù)下列條件,判斷解三角形的情況
(1)a=14,b=16,A=45°;
(2)a=12,c=15,A=120°;
(3)a=8,b=16,A=30°;
(4)b=18,c=20,B=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=2sin($\frac{x}{2}$+$\frac{π}{6}$),x∈R.
(Ⅰ)求f(x)的最小正周期與單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)y=f(4x+2π),x∈[0,$\frac{π}{2}$]的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.計(jì)算:
(1)(1+i)(1-i)+(1+2i)2
(2)$\frac{(3-2i)^{2}-3(1-i)}{2+i}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若S=1×1!+2×2!+3×3!+…+2016×2016!,則S的個(gè)位數(shù)字是(  )
A.0B.1C.3D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某公司做了用戶對(duì)其產(chǎn)品滿意度的問(wèn)卷調(diào)查,隨機(jī)抽取20名男女用戶,匯總數(shù)據(jù)如表
不滿意滿意合計(jì)
145
合計(jì)20
由于部分?jǐn)?shù)據(jù)丟失,根據(jù)原始資料只查得:從滿意的人數(shù)中任意抽取2人,都是男生的概率是$\frac{2}{7}$.
(Ⅰ)根據(jù)條件完成以上2×2列聯(lián)表,并據(jù)此判斷有多大以上的把握認(rèn)為“用戶滿意度”與性別有關(guān).
(Ⅱ)從以上男性用戶中抽取2人,女性用戶中抽取1人,其中滿意的人數(shù)為X,求X的分布列和期望E(X).
附:χΧ
2=$\frac{{n{{({ad-bc})}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
P(χ2≥k)0.1000.0500.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)y=2sin2x+2sinx•cosx的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知i為虛數(shù)單位,實(shí)數(shù)a與純虛數(shù)z滿足(2-i)z=4-ai,則a的值為-8.

查看答案和解析>>

同步練習(xí)冊(cè)答案