11.已知函數(shù)f(x)=2sin($\frac{x}{2}$+$\frac{π}{6}$),x∈R.
(Ⅰ)求f(x)的最小正周期與單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)y=f(4x+2π),x∈[0,$\frac{π}{2}$]的最大值、最小值.

分析 (Ⅰ)由條件利用正弦函數(shù)的周期性和單調(diào)性,求得f(x)的最小正周期與單調(diào)增區(qū)間.
(Ⅱ)由條件利用正弦函數(shù)的定義域和值域,求得函數(shù)y=f(4x+2π),x∈[0,$\frac{π}{2}$]時(shí)的最大值、最小值.

解答 解:(Ⅰ)∵$f(x)=2sin(\frac{x}{2}+\frac{π}{6})$,∴T=4π.
∵函數(shù)y=sinx的單調(diào)增區(qū)間為$[-\frac{π}{2}+2kπ,\frac{π}{2}+2kπ],k∈Z$,
故由$2kπ-\frac{π}{2}≤\frac{x}{2}+\frac{π}{6}≤2kπ+\frac{π}{2},k∈Z$,
求得$4kπ-\frac{4π}{3}≤x≤4kπ+\frac{2π}{3},k∈Z$,
∴$f(x)的增區(qū)間為[4kπ-\frac{4π}{3},4kπ+\frac{2π}{3}],k∈Z$.
(Ⅱ) 化簡(jiǎn)函數(shù)y=f(4x+2π),可得$y=-2sin(2x+\frac{π}{6}),x∈[0,\frac{π}{2}]$,
∵$x∈[0,\frac{π}{2}]$,∴$2x+\frac{π}{6}∈[\frac{π}{6},\frac{7π}{6}]$,
故當(dāng)$2x+\frac{π}{6}=\frac{7π}{6}即x=\frac{π}{2}$時(shí),函數(shù)y=f(4x+2π)的最大值為1;
當(dāng)$2x+\frac{π}{6}=\frac{π}{2}即x=\frac{π}{6}$時(shí),函數(shù)y=f(4x+2π)的最小值為-2.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的單調(diào)性,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列命題中的假命題是( 。
A.?α,β∈R,sin(α+β)=sinα+sinβ
B.?φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù)
C.?x0∈R,x03+ax02+bx0+c=0(a,b,c均為R且為常數(shù))
D.?a>0,函數(shù)f(x)=ln2x-a有零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.把下列由描述法表示的集合轉(zhuǎn)化為列舉法:
(1)A={(x,y)|x+y=6,x∈N,y∈N};
(2)B={x|$\frac{6}{3-x}$∈N,x∈N};
(3)C={y|y=-x2+6,x∈N,y∈N}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在平面直角坐標(biāo)系xOy中,已知第一象限內(nèi)的點(diǎn)P(a,b)在直線x+2y-1=0上,則$\frac{4}{a+b}$+$\frac{1}$的最小值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.對(duì)于函數(shù)y=f(x),若x0滿足f(x0)=x0,則稱x0為函數(shù)f(x)的一階不動(dòng)點(diǎn),若x0滿足f[f(x0)]=x0,則稱x0為函數(shù)f(x)的二階不動(dòng)點(diǎn),
(1)設(shè)f(x)=2x+3,求f(x)的二階不動(dòng)點(diǎn).
(2)若f(x)是定義在區(qū)間D上的增函數(shù),且x0為函數(shù)f(x)的二階不動(dòng)點(diǎn),求證:x0也必是函數(shù)f(x)的一階不動(dòng)點(diǎn);
(3)設(shè)f(x)=ex+x+a,a∈R,若f(x)在[0,1]上存在二階不動(dòng)點(diǎn)x0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知z∈C,$\overline{z}$表示z的共軛復(fù)數(shù),若z•$\overline{z}$+i•z=$\frac{10}{3+i}$,求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.三個(gè)人獨(dú)立破譯一密碼,他們能獨(dú)立破譯的概率分別是$\frac{1}{5}$、$\frac{2}{5}$、$\frac{1}{2}$,則此密碼被破譯的概率為( 。
A.$\frac{1}{25}$B.$\frac{6}{25}$C.$\frac{19}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.計(jì)算:
(1)($\frac{8}{27}$)${\;}^{-\frac{1}{3}}$-160.25=-$\frac{1}{2}$;
(2)log93+lg3•log310=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,過F作AF的垂線與雙曲線的兩條漸近線交于B、C兩點(diǎn),過B、C分別作AC、AB的垂線,兩垂線交于點(diǎn)D.若D到直線BC的距離小于2(a+$\sqrt{{a}^{2}+^{2}}$),則該雙曲線的離心率的取值范圍是(  )
A.(1,2)B.($\sqrt{2}$,2)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,$\sqrt{3}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案