已知數(shù)列{an}的各項(xiàng)都是正數(shù),其前n項(xiàng)和Sn滿足2Sn=an+
1
an
,n∈N*,則數(shù)列{an}的通項(xiàng)公式為
 
考點(diǎn):數(shù)列遞推式
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:根據(jù)數(shù)列的遞推關(guān)系進(jìn)行化簡即可.
解答: 解:當(dāng)n=1時(shí),2S1=a1+
1
a1
=2a1,a1=1,
當(dāng)n≥2時(shí),2Sn=Sn-Sn-1+
1
Sn-Sn-1
,即Sn+Sn-1=
1
Sn-Sn-1

Sn2-Sn-12=1,又S12=1,
∴數(shù)列{Sn2}是公差d=1首項(xiàng)為1的等差數(shù)列,
則Sn2=1+n-1=n,即Sn=
n
,則 an=
n
-
n-1

故答案為:
n
-
n-1
點(diǎn)評:本題主要考查數(shù)列通項(xiàng)公式的求解,根據(jù)數(shù)列通項(xiàng)公式和前n項(xiàng)和之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某游樂園為迎接建國60周年,特在今年年初用98萬元購進(jìn)一批新的游樂器材供游客游玩.預(yù)計(jì)第一年包括維修費(fèi)在內(nèi)需各種費(fèi)用12萬元,從第二年開始每年所需費(fèi)用均比前一年增加4萬元,這些玩具每年總收入預(yù)計(jì)為50萬元,若干年后,若有兩種處理方案:①當(dāng)盈利總額達(dá)到最大時(shí),以8萬元的價(jià)格全部賣出;②當(dāng)年平均盈利達(dá)到最大值時(shí),以26萬元的價(jià)格全部賣出.
(Ⅰ)分別寫出經(jīng)過x年后方案①中盈利總額y1和方案②中年平均盈利y2關(guān)于x 的函數(shù)關(guān)系式
(Ⅱ)問哪一種方案較為劃算?請說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax2+b在(-3,-1)上是增函數(shù),那么該函數(shù)在(1,3)上是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=tanx(x∈{x|x≠
π
2
+kπ,k∈Z}的圖象上所有點(diǎn)向左平行移動(dòng)
π
3
個(gè)單位長度,再把所得圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變),得到的圖象所表示的函數(shù)解析式是( 。
A、y=tan(2x-
π
3
B、y=tan(
x
2
+
π
6
C、y=tan(2x+
π
3
D、y=tan(2x+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(3,4),求滿足下列條件的直線方程l,經(jīng)過點(diǎn)A且在兩坐標(biāo)軸上截距相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)全集U=N,集合A={1,3,5,7,8},B={1,2,3,4,5},則圖中陰影部分表示的集合為(  
A、{2,4}
B、{7,8}
C、{1,3,5}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知,對于?x∈R,不等式sinx+cosx>m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}各項(xiàng)均不為0,且滿足關(guān)系式an=
3an-1
an-1+3
(n≥2).
(1)求證數(shù)列{
1
an
}
為等差數(shù)列;
(2)當(dāng)a1=
1
2
時(shí),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f′(x0)=A,則
lim
△x→0
f(x0-△x)-f(x0)
△x
等于( 。
A、A
B、-A
C、
1
2
A
D、以上都不是

查看答案和解析>>

同步練習(xí)冊答案