已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足
a15
a14
<-1,則下列結(jié)論正確的是( 。
A、S14必為Sn的最大值
B、S14必為Sn的最小值
C、S15必為Sn的最大值
D、S14可能為Sn的最大值,也可能為Sn的最小值
考點(diǎn):等差數(shù)列的性質(zhì),等差數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:等差數(shù)列{an}中,
a15
a14
<-1⇒
a15+a14
a14
<0,對(duì)分子與分母的符號(hào)分類討論,從而利用等差數(shù)列的單調(diào)性即可得到答案.
解答: 解:等差數(shù)列{an}中,∵
a15
a14
<-1,
a15+a14
a14
<0,
a15+a14>0
a14<0
①或
a15+a14<0
a14>0
②,
對(duì)于①,該數(shù)列為遞增數(shù)列,前14項(xiàng)中,均為負(fù)值,從第15項(xiàng)開始為正,∴S14為Sn的最小值;
對(duì)于②該數(shù)列為遞減數(shù)列,前14項(xiàng)中,均為正值,從第15項(xiàng)開始為負(fù),∴S14為Sn的最大值;
故S14可能為Sn的最大值,也可能為Sn的最小值.
故選:D.
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì)與等差數(shù)列的單調(diào)性質(zhì),考查等價(jià)轉(zhuǎn)化思想與分類討論思想的靈活應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a、b、c且acosC+
1
2
c=b.
(1)求A的大。
(2)若a=
3
,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{bn},bn=2-
1
bn-1
(n≥2,n∈N*),數(shù)列{an}滿足an=
1
bn-1

(1)證明:數(shù)列{an}是等差數(shù)列;
(2)若a1=-
7
2
,求數(shù)列{bn}中的最大項(xiàng)和最小項(xiàng)的值;
(3)若數(shù)列{an}的前n項(xiàng)和Sn滿足Sn≥S6(n∈N*),求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC的外接圓的圓心為O,AB=2,AC=3,BC=
7
,則
AO
BC
等于( 。
A、
3
2
B、
5
2
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a3+a9=12,則數(shù)列{an}的前11項(xiàng)和S11等于( 。
A、33B、44C、55D、66

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試畫出函數(shù)f(x)=ln(x-
1
x
)的大致圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)三角形的外接圓半徑是3,且其三邊長之比是3:4:5,此三角形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式x2+px>4x+p-3對(duì)于0≤p≤4恒成立,則x的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若lg2=a,lg3=b,則lg6=(  )
A、a-b
B、a+b
C、a2
D、b2

查看答案和解析>>

同步練習(xí)冊答案