【題目】已知A、BC是橢圓W上的三個點,O是坐標原點.

(I)當點BW的右頂點,且四邊形OABC為菱形時,求此菱形的面積.

(II)當點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.

【答案】(I)(II) 不可能是菱形

【解析】

解:(1)橢圓Wy21的右頂點B的坐標為(2,0)

因為四邊形OABC為菱形,所以ACOB相互垂直平分.

所以可設A(1,m),

代入橢圓方程得m21,即m±.

所以菱形OABC的面積是

|OB|·|AC|×2×2|m|.

(2)四邊形OABC不可能為菱形.理由如下:

假設四邊形OABC為菱形.

因為點B不是W的頂點,且直線AC不過原點,

所以可設AC的方程為ykxm(k≠0,m≠0)

y并整理得(14k2)x28kmx4m240.

A(x1y1),C(x2,y2),則=-,m.

所以AC的中點為M.

因為MACOB的交點,

所以直線OB的斜率為-.

因為1,所以ACOB不垂直.

所以四邊形OABC不是菱形,與假設矛盾.

所以當點B不是W的頂點時,四邊形OABC不可能是菱形.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.曲線的極坐標方程為,曲線與曲線的交線為直線

1)求直線和曲線的直角坐標方程;

2)直線軸交于點,與曲線相交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,,,現(xiàn)沿對角線折起,使點A到達點P,點M,N分別在直線,上,且A,BM,N四點共面.

1)求證:;

2)若平面平面,二面角平面角大小為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足為等比數(shù)列,且

1)求;

2)設,記數(shù)列的前項和為

①求

②求正整數(shù) k,使得對任意均有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求下列各式極限:

1;

2;

3;

4

5;

6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知雙曲線

1)過的左頂點引的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成的三角形的面積;

2)設斜率為1的直線lPQ兩點,若l與圓相切,求證:;

3)設橢圓,若MN分別是,上的動點,且,求證:O到直線MN的距離是定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的奇數(shù)項是首項為1的等差數(shù)列,偶數(shù)項是首項為2的等比數(shù)列.數(shù)列項和為,且滿足

(1)求數(shù)列的通項公式;

(2)求數(shù)列項和

(3)在數(shù)列中,是否存在連續(xù)的三項,按原來的順序成等差數(shù)列?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地有三家工廠,分別位于矩形ABCD的頂點A,B,及CD的中點P處,已知km,,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD的區(qū)域上(含邊界),且A,B與等距離的一點O處建造一個污水處理廠,并鋪設排污管道AO,BOOP,設排污管道的總長為ykm

I)按下列要求寫出函數(shù)關系式:

,將表示成的函數(shù)關系式;

,將表示成的函數(shù)關系式.

)請你選用(I)中的一個函數(shù)關系式,確定污水處理廠的位置,使三條排水管道總長度最短.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求曲線的普通方程和的直角坐標方程;

2)已知曲線的極坐標方程為,點是曲線的交點,點是曲線的交點,、均異于原點,且,求實數(shù)的值.

查看答案和解析>>

同步練習冊答案