18.已知集合A={x|1<x≤5},集合B={$\frac{2x-1}{x-3}$>0}.
(1)求A∩B;
(2)若集合C={x|a+1≤x≤4a-3},且C∪A=A,求實(shí)數(shù)a的取值范圍.

分析 (1)由分式不等式的解法求出集合B,由交集的運(yùn)算求出A∩B;
(2)由C∪A=A得C⊆A,根據(jù)子集的定義對C進(jìn)行分類討論,分別列出不等式組,求出實(shí)數(shù)a的取值范圍.

解答 解:(1)由$\frac{2x-1}{x-3}>0$得(2x-1)(x-3)>0,
解得x<$\frac{1}{2}$或x>3,則集合B={x|x<$\frac{1}{2}$或x>3},----2
因集合A={x|1<x≤5},
所以A∩B={x|3<x≤5};------4
(2)因?yàn)镃∪A=A,所以C⊆A={x|1<x≤5},------5
又集合C={x|a+1≤x≤4a-3},
①當(dāng)C=∅時(shí),則4a-3<a+1,解得$a<\frac{4}{3}$,滿足題意;------------7
②當(dāng)C≠∅時(shí),要使C⊆A,則$\left\{\begin{array}{l}{4a-3≥a+1}\\{a>0}\\{4a-5≤5}\end{array}\right.$,解得$\frac{4}{3}≤a≤2$.--------9
綜上所述,實(shí)數(shù)a的取值范圍為(-∞,2].------------10

點(diǎn)評 本題考查了分式不等式的解法,交集的運(yùn)算,以及集合之間的關(guān)系的應(yīng)用,考查分類討論思想,注意空集是任何集合的子集.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.中心在原點(diǎn)的橢圓長軸右頂點(diǎn)為(2,0),直線y=x-1與橢圓相交于M,N兩點(diǎn),MN中點(diǎn)的橫坐標(biāo)為$\frac{2}{3}$,則此橢圓標(biāo)準(zhǔn)方程是( 。
A.$\frac{x^2}{2}+\frac{y^2}{4}=1$B.$\frac{x^2}{4}+\frac{y^2}{3}=1$C.$\frac{x^2}{3}+\frac{y^2}{2}=1$D.$\frac{x^2}{4}+\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.給出定義:若 m-$\frac{1}{2}$<x≤m+$\frac{1}{2}$(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個(gè)命題:
①函數(shù)y=f(x)的定義域是R,值域是(-$\frac{1}{2}$,$\frac{1}{2}$]
②函數(shù)y=f(x)的圖象關(guān)于y軸對稱;
③數(shù)y=f(x)的圖象關(guān)于坐標(biāo)原點(diǎn)對稱;
④函數(shù)y=f(x)在(-$\frac{1}{2}$,$\frac{1}{2}$]上是增函數(shù);
則其中正確命題是①④(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列四組函數(shù),兩個(gè)函數(shù)相同的是(  )
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=xB.f(x)=log33x,g(x)=$\root{3}{{x}^{3}}$
C.f(x)=($\sqrt{x}$)2,g(x)=|x|D.f(x)=x,g(x)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知f($\frac{1}{2}$x-1)=2x+3,且f(m-1)=6,則實(shí)數(shù)m等于$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若關(guān)于x的不等式mx+2>0的解集是{x|x<2},則實(shí)數(shù)m等于( 。
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}是公差不為零的等差數(shù)列,Sn為其前n項(xiàng)和,且a2=3,又a4、a5、a8成等比數(shù)列,則an=-2n+7,使Sn最大的序號n的值3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且a1=-1,$\frac{{a}_{n+1}}{{S}_{n+1}}$=Sn,求數(shù)列{an}的前n項(xiàng)和Sn=-$\frac{1}{n}$,通項(xiàng)公式an=$\left\{\begin{array}{l}{-1}&{n=1}\\{\frac{1}{n(n-1)}}&{n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知點(diǎn)A(2,-3),B(-1,-3),若過點(diǎn)P(1,1)且斜率為k的直線l與線段AB不相交,則k的取值范圍是(-∞,-4]∪[2,+∞).

查看答案和解析>>

同步練習(xí)冊答案