【題目】在△ABC中,a、b是方程x2﹣2 +2=0的兩根,且2cos(A+B)=﹣1
(1)求角C的度數(shù);
(2)求c;
(3)求△ABC的面積.

【答案】
(1)解:∵2cos(A+B)=﹣1,A+B+C=180°,

∴2cos(180°﹣C)=﹣1,∴cos(180°﹣C)=﹣

∴cosC=

∵0°<C<180°,∴C=60°


(2)解:∵a、b是方程x2﹣2 +2=0的兩根,

∴a+b=2 ,ab=2

由余弦定理可知cosC= = = ,∴c=


(3)解:SABC= absinC= =
【解析】(1)利用三角形的內角和及誘導公式,即可求得結論;(2)利用韋達定理及余弦定理,可求c的值;(3)利用三角形的面積公式,可求面積.
【考點精析】本題主要考查了兩角和與差的余弦公式的相關知識點,需要掌握兩角和與差的余弦公式:才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知冪函數(shù)f(x)=(﹣2m2+m+2)xm+1為偶函數(shù).
(1)求f(x)的解析式;
(2)若函數(shù)y=f(x)﹣2(a﹣1)x+1在區(qū)間(2,3)上為單調函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商人如果將進貨單價為 元的商品按每件 元出售,則每天可銷售 件,現(xiàn)在他采用提高售價,減少進貨量的辦法增加利潤.已知這種商品每件銷售價提高 元,銷售量就要減少 件,如果使得每天所賺的利潤最大,那么他應將每件的銷售價定為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若a、b是方程2(lg x)2-lg x6+3=0的兩個實根,求lg(ab)·(logab+logba)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的有( ) (1.)很小的實數(shù)可以構成集合;
(2.)集合{y|y=x2﹣1}與集合{(x,y)|y=x2﹣1}是同一個集合;
(3.) 這些數(shù)組成的集合有5個元素;
(4.)集合{(x,y)|xy≤0,x,y∈R}是指第二和第四象限內的點集.
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,已知E為棱CC1上的動點.
(1)求證:A1E⊥BD;
(2)是否存在這樣的E點,使得平面A1BD⊥平面EBD?若存在,請找出這樣的E點;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于x的方程 (a>0,且a≠1)解的個數(shù)是( )
A.2
B.1
C.0
D.不確定的

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有2000名網購者在11月11日當天于某購物網站進行網購消費(消費金額不超過1000元),其中有女士1100名,男士900名、該購物網站為優(yōu)化營銷策略,根據(jù)性別采用分層抽樣的方法從這2000名網購者中抽取200名進行分析,如下表:(消費金額單位:元) 女士消費情況:

消費金額

(0,200)

[200,400)

[400,600)

[600,800)

[800,1000]

人數(shù)

10

25

35

30

x

男士消費情況:

消費金額

(0,200)

[200,400)

[400,600)

[600,800)

[800,1000]

人數(shù)

15

30

25

y

5

附:

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

k0

2.706

3.841

5.024

6.635

7.879

(K2= ,n=a+b+c+d)
(1)計算x,y的值;在抽出的200名且消費金額在[800,1000](單位:元)的網購者中隨機選出兩名發(fā)放網購紅包,求選出的兩名網購者都是男士的概率;
(2)若消費金額不低于600元的網購者為“網購達人”,低于600元的網購者為“非網購達人”,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫2×2列聯(lián)表,并回答能否在犯錯誤的概率不超過0.05的前提下認為“是否為‘網購達人’與性別有關?”

女士

男士

總計

網購達人

非網購達人

總計

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設O為△ABC的外心,若 + + = ,則M是△ABC的(
A.重心(三條中線交點)
B.內心(三條角平分線交點)
C.垂心(三條高線交點)
D.外心(三邊中垂線交點)

查看答案和解析>>

同步練習冊答案