【題目】在△ABC中,a、b是方程x2﹣2 +2=0的兩根,且2cos(A+B)=﹣1
(1)求角C的度數(shù);
(2)求c;
(3)求△ABC的面積.
【答案】
(1)解:∵2cos(A+B)=﹣1,A+B+C=180°,
∴2cos(180°﹣C)=﹣1,∴cos(180°﹣C)=﹣ .
∴cosC= ,
∵0°<C<180°,∴C=60°
(2)解:∵a、b是方程x2﹣2 +2=0的兩根,
∴a+b=2 ,ab=2
由余弦定理可知cosC= = = ,∴c=
(3)解:S△ABC= absinC= = .
【解析】(1)利用三角形的內角和及誘導公式,即可求得結論;(2)利用韋達定理及余弦定理,可求c的值;(3)利用三角形的面積公式,可求面積.
【考點精析】本題主要考查了兩角和與差的余弦公式的相關知識點,需要掌握兩角和與差的余弦公式:才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知冪函數(shù)f(x)=(﹣2m2+m+2)xm+1為偶函數(shù).
(1)求f(x)的解析式;
(2)若函數(shù)y=f(x)﹣2(a﹣1)x+1在區(qū)間(2,3)上為單調函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商人如果將進貨單價為 元的商品按每件 元出售,則每天可銷售 件,現(xiàn)在他采用提高售價,減少進貨量的辦法增加利潤.已知這種商品每件銷售價提高 元,銷售量就要減少 件,如果使得每天所賺的利潤最大,那么他應將每件的銷售價定為( )
A. 元
B. 元
C. 元
D. 元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確的有( ) (1.)很小的實數(shù)可以構成集合;
(2.)集合{y|y=x2﹣1}與集合{(x,y)|y=x2﹣1}是同一個集合;
(3.) 這些數(shù)組成的集合有5個元素;
(4.)集合{(x,y)|xy≤0,x,y∈R}是指第二和第四象限內的點集.
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,已知E為棱CC1上的動點.
(1)求證:A1E⊥BD;
(2)是否存在這樣的E點,使得平面A1BD⊥平面EBD?若存在,請找出這樣的E點;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有2000名網購者在11月11日當天于某購物網站進行網購消費(消費金額不超過1000元),其中有女士1100名,男士900名、該購物網站為優(yōu)化營銷策略,根據(jù)性別采用分層抽樣的方法從這2000名網購者中抽取200名進行分析,如下表:(消費金額單位:元) 女士消費情況:
消費金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
人數(shù) | 10 | 25 | 35 | 30 | x |
男士消費情況:
消費金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
人數(shù) | 15 | 30 | 25 | y | 5 |
附:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(K2= ,n=a+b+c+d)
(1)計算x,y的值;在抽出的200名且消費金額在[800,1000](單位:元)的網購者中隨機選出兩名發(fā)放網購紅包,求選出的兩名網購者都是男士的概率;
(2)若消費金額不低于600元的網購者為“網購達人”,低于600元的網購者為“非網購達人”,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫2×2列聯(lián)表,并回答能否在犯錯誤的概率不超過0.05的前提下認為“是否為‘網購達人’與性別有關?”
女士 | 男士 | 總計 | |
網購達人 | |||
非網購達人 | |||
總計 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設O為△ABC的外心,若 + + = ,則M是△ABC的( )
A.重心(三條中線交點)
B.內心(三條角平分線交點)
C.垂心(三條高線交點)
D.外心(三邊中垂線交點)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com