分析 由正三棱柱A1B1C1-ABC的性質(zhì)可得:AA1⊥AB,AA1⊥AC.在Rt△ADF中,利用勾股定理可得DF=2.因此只要求出DE+EF的最小值即可得出.把底面ABC展開(kāi)與側(cè)面ACC1A1在同一個(gè)平面,如圖所示,只有當(dāng)三點(diǎn)D,E,F(xiàn)在同一條直線時(shí),DE+EF取得最小值.利用余弦定理即可得出.
解答 解:由正三棱柱A1B1C1-ABC,可得AA1⊥底面ABC,∴AA1⊥AB,AA1⊥AC.
在Rt△ADF中,DF=$\sqrt{(\sqrt{3})^{2}+{1}^{2}}$=2.
把底面ABC展開(kāi)與側(cè)面ACC1A1在同一個(gè)平面,如圖所示,
只有當(dāng)三點(diǎn)D,E,F(xiàn)在同一條直線時(shí),DE+EF取得最小值.
在△ADE中,∠DAE=60°+90°=150°,由余弦定理可得:
DE=$\sqrt{(\sqrt{3})^{2}+{1}^{2}-2\sqrt{3}×cos15{0}^{°}}$=$\sqrt{7}$.
∴△DEF周長(zhǎng)的最小值=$\sqrt{7}$+2.
故答案為:$\sqrt{7}$+2.
點(diǎn)評(píng) 本題考查了空間幾何位置關(guān)系、余弦定理、側(cè)面展開(kāi)圖,考查了轉(zhuǎn)化能力、數(shù)形結(jié)合能力、推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{3}$-$\frac{{\sqrt{2}}}{3}$i | B. | -$\frac{2}{3}$-$\frac{\sqrt{2}}{3}$i | C. | $\frac{2}{3}$+$\frac{\sqrt{2}}{3}$i | D. | -$\frac{2}{3}$+$\frac{\sqrt{2}}{3}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,2) | B. | (-∞,3) | C. | (-∞,4) | D. | (-∞,6) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | -$\frac{π}{3}$ | D. | -$\frac{π}{6}$或$\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{6}$x-y+2=0 | B. | x-$\sqrt{6}$y+1=0 | C. | 4x-y+2=0 | D. | x-4y+1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,1] | B. | (0,1] | C. | [1,+∞) | D. | (-∞,1] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com