16.設(shè)集合A={x|2x2-5x-3≤0},B={y|y=log2(x2+3x-4)},則A∩B=( 。
A.[-3,$\frac{1}{2}$]B.[-$\frac{1}{2}$,3]C.(1,3]D.(4,+∞)

分析 解關(guān)于A、B的不等式,求出A、B的范圍,取交集即可.

解答 解:由2x2-5x-3≤0,得-$\frac{1}{2}$≤x≤3,∴A=[-$\frac{1}{2}$,3];
∵函數(shù)y=log2(x2+3x-4的值域?yàn)镽,∴B=R,
∴A∩B=[-$\frac{1}{2}$,3],
故選:B.

點(diǎn)評(píng) 本題考查了集合的運(yùn)算,考查解不等式問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的部分圖象如圖所示,則函數(shù)f(x)的單調(diào)遞減區(qū)間為[$\frac{π}{4}+kπ$,$\frac{5π}{8}+kπ$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)不等式組$\left\{\begin{array}{l}2x-y-2≤0\\ x+y-1≥0\\ x-y+1≥0\end{array}\right.$表示的平面區(qū)域?yàn)閍,P(x,y)是區(qū)域D上任意一點(diǎn),則|x-2|-|2y|的最小值是-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={x|x2-x-6≤0},$B=\{x|\sqrt{x^2}>2\}$,則A∩B=( 。
A.(2,3]B.(2,3)C.(-2,3]D.(-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知平面向量$\overrightarrow a=(-2,1)$,$\overrightarrow b=(1,2)$,則$|{\overrightarrow a-2\overrightarrow b}|$的值是( 。
A.1B.5C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知F1,F(xiàn)2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),設(shè)雙曲線的離心率為e.若在雙曲線的右支上存在點(diǎn)M,滿足|MF2|=|F1F2|,且esin∠MF1F2=1,則該雙曲線的離心率e等于( 。
A.$\frac{5}{4}$B.$\frac{5}{3}$C.$\sqrt{5}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x3-3x2+2,g(x)=kx-2lnx+3(k>-$\frac{1}{6}$).
(Ⅰ)若過點(diǎn)P(a,-3)(a>0)恰有兩條直線與曲線y=f(x)相切,求a的值;
(Ⅱ)用min{p,q}表示p,q中的最小值,設(shè)函數(shù)h(x)=min{f(x),g(x)}(x>0),若h(x)恰有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.四棱柱ABCD-A1B1C1D1中,底面ABCD為正方形,AD=AA1=A1D=2,H為AD中點(diǎn),且A1H⊥BD.
(1)證明AB⊥AA1
(2)求點(diǎn)C到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知三棱錐A-BCD的四個(gè)頂點(diǎn)A,B,C,D都在球O的表面上,BC⊥CD,AC⊥平面BCD,且AC=2$\sqrt{2}$,BC=CD=2,則球O的表面積為( 。
A.B.C.16πD.2$\sqrt{2}$π

查看答案和解析>>

同步練習(xí)冊(cè)答案