20.已知直線l:ax+by-2=0平分圓x2+y2-6x-4y-12=0,若a,b均為正數(shù),則$\frac{3}{a}$+$\frac{2}$的最小值是( 。
A.25B.12C.$\frac{25}{2}$D.9

分析 直線ax+by-2=0(a,b∈R*)平分圓x2+y2-6x-4y-12=0,可得:直線ax+by-2=0(a,b∈R*)經(jīng)過(guò)圓心,于是a+b=1.再利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:圓x2+y2-6x-4y-12=0化為(x-3)2+(y-2)2=25,圓心為C(3,2),
∵直線ax+by-2=0(a,b∈R*)平分圓x2+y2-6x-4y-12=0,
∴直線ax+by-2=0(a,b∈R*)經(jīng)過(guò)圓心C(3,2),
∴3a+2b-2=0,化為$\frac{3}{2}$a+b=1.
∴$\frac{3}{a}$+$\frac{2}$=($\frac{3}{2}$a+b)($\frac{3}{a}$+$\frac{2}$)=$\frac{13}{2}$+$\frac{3a}$+$\frac{3b}{a}$≥$\frac{13}{2}$+2$\sqrt{\frac{3a}•\frac{3b}{a}}$=$\frac{25}{2}$,
當(dāng)且僅當(dāng)a=b=$\frac{2}{5}$時(shí)取等號(hào).
∴$\frac{3}{a}$+$\frac{2}$的最小值是$\frac{25}{2}$.
故選:C.

點(diǎn)評(píng) 本題考查了圓的性質(zhì)、“乘1法”與基本不等式的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)θ∈R,“sinθ=cosθ“是“cos2θ=0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)函數(shù)f(x)的定義域?yàn)镽,f(x)=$\left\{\begin{array}{l}{-x,-1≤x≤0}\\{{3}^{x}-1,0<x<1}\end{array}\right.$,且對(duì)任意的x∈R都有f(x+1)=-$\frac{1}{f(x)}$,若在區(qū)間[-5,1]上函數(shù)g(x)=f(x)-mx+m恰有5個(gè)不同零點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A.[-$\frac{1}{4}$,-$\frac{1}{6}$)B.(-$\frac{1}{2}$,-$\frac{1}{4}$]C.(-$\frac{1}{6}$,0]D.(-$\frac{1}{2}$,-$\frac{1}{6}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.與函數(shù)y=x相同的函數(shù)是( 。
A.y=$\sqrt{{x}^{2}}$B.y=$\frac{{x}^{2}}{x}$
C.y=($\sqrt{x}$)2D.y=logaax(a>0且a≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且$\frac{cosA}{a}$+$\frac{cosB}$=$\frac{1}{c}$.
(1)證明:a,c,b成等比數(shù)列;
(2)若△ABC的外接圓半徑為$\sqrt{3}$,且4sin(C-$\frac{π}{6}$)cosC=1,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知集合A={x|x2-3x-10≤0}.
(1)若B⊆A,B={x|m+1≤x≤2m-6},求實(shí)數(shù)m的取值范圍;
(2)若A⊆B,B={x|m-6≤x≤2m-1},求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知向量$\overrightarrow m=({a,2}),\overrightarrow n=({1,1-a})$,且$\overrightarrow m⊥\overrightarrow n$,則實(shí)數(shù)a的值為( 。
A.0B.2C.-2或1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知拋物線E:y2=2px(p>0)的準(zhǔn)線是圓C:(x-1)2+y2=4的切線.
(Ⅰ)求拋物線E的方程;
(Ⅱ)若過(guò)拋物線E的焦點(diǎn)F的直線l與拋物線E交于A,B兩點(diǎn),Q(-1,0),且BQ⊥BF,如圖所示.證明:|BF|-|AF|=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.江蘇某教學(xué)研究機(jī)構(gòu)為了調(diào)查高中生的數(shù)學(xué)學(xué)習(xí)成績(jī)是否與物理成績(jī)有關(guān)系,在某校高二年級(jí)隨機(jī)抽查了50名學(xué)生,調(diào)查結(jié)果表明:在數(shù)學(xué)成績(jī)好的25人中有18人物理成績(jī)好,另外7人物理成績(jī)一般;在數(shù)學(xué)成績(jī)一般的25人中有6人物理成績(jī)好,另外19人物理成績(jī)一般.
(1)試根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表,并運(yùn)用獨(dú)立性檢驗(yàn)的思想,指出是否有99.9%的把握認(rèn)為高中生的數(shù)學(xué)成績(jī)與物理成績(jī)有關(guān)系;
數(shù)學(xué)成績(jī)好數(shù)學(xué)成績(jī)一般總計(jì)
物理成績(jī)好
物理成績(jī)一般
總計(jì)
(2)現(xiàn)將4名數(shù)學(xué)成績(jī)好且物理成績(jī)也好的學(xué)生分別標(biāo)號(hào)為1,2,3,4,將這4名數(shù)學(xué)成績(jī)好但物理成績(jī)一般的學(xué)生也分別標(biāo)號(hào)為1,2,3,4,從這兩組學(xué)生中任選1人進(jìn)行學(xué)習(xí)交流,求被選取的2名學(xué)生標(biāo)號(hào)好不大于5的概率.
附:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(n=a+b+c+d)

查看答案和解析>>

同步練習(xí)冊(cè)答案