考點:數(shù)列遞推式,數(shù)列的求和
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)利用a
1=0且S
n+1=2S
n+
n(n+1),代入計算,可得a
2,a
3,n≥2時,a
n+1=S
n+
n(n+1),a
n=S
n-1+
n(n-1),兩式相減,即可得出結(jié)論;
(Ⅱ)利用a
n+1=2a
n+n,結(jié)合b
n=a
n+1-a
n(n∈N
*),即可證明:b
n+1=2b
n+1;
(Ⅲ)利用疊加法,即可求數(shù)列{a
n}(n∈N
*)的通項公式.
解答:
解:(Ⅰ)∵a
1=0且S
n+1=2S
n+
n(n+1),
∴S
2=2S
1+1,
∴a
2=1,
同理可得,a
3=4;
∵S
n+1=2S
n+
n(n+1),
∴a
n+1=S
n+
n(n+1),①
∴n≥2時,a
n=S
n-1+
n(n-1),②
①-②:a
n+1-a
n=a
n+n,
∴a
n+1=2a
n+n,n=1時也成立;
(Ⅱ)∵a
n+1=2a
n+n,
∴a
n+1-a
n=2(a
n-a
n-1)+1,
∵b
n=a
n+1-a
n,
∴b
n+1=2b
n+1;
(Ⅲ)∵b
n+1=2b
n+1,
∴b
n+1+1=2(b
n+1),
∴數(shù)列{b
n}是以2為首項,2為公比的等比數(shù)列,
∴b
n=2
n,
∴a
n+1-a
n=2
n,
∴a
n=a
1+(a
2-a
1)+…+(a
n-a
n-1)=0+2+…+2
n-1=
=2
n-2.
點評:本題考查數(shù)列遞推式,考查數(shù)列的求和,考查等比數(shù)列的證明,考查學生分析解決問題的能力,屬于中檔題.