【題目】已知橢圓的兩焦點與短軸的一個端點的連線構成等腰直角三角形,
直線與以橢圓C的右焦點為圓心,以橢圓的長半軸長為半徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P為橢圓C上一點,若過點的直線與橢圓C相交于不同的兩點S和T,
滿足(O為坐標原點),求實數的取值范圍.
【答案】(Ⅰ)(Ⅱ)
【解析】試題分析:(1)設橢圓的方程,用待定系數法求出的值;(2)解決直線和橢圓的綜合問題時注意:第一步:根據題意設直線方程,有的題設條件已知點,而斜率未知;有的題設條件已知斜率,點不定,可由點斜式設直線方程.第二步:聯(lián)立方程:把所設直線方程與橢圓的方程聯(lián)立,消去一個元,得到一個一元二次方程.第三步:求解判別式:計算一元二次方程根.第四步:寫出根與系數的關系.第五步:根據題設條件求解問題中結論..
試題解析:(Ⅰ)由題意,以橢圓的右焦點為圓心,以橢圓的長半軸長為半徑的圓的方程為,
∴圓心到直線的距離(*)
∵橢圓的兩焦點與短軸的一個端點的連線構成等腰直角三角形,
∴,, 代入(*)式得,∴,
故所求橢圓方程為
(Ⅱ)由題意知直線的斜率存在,設直線方程為,設,
將直線方程代入橢圓方程得:,
∴,∴.
設,,則,
由,
當,直線為軸, 點在橢圓上適合題意;
當,得∴.
將上式代入橢圓方程得:,
整理得:,由知,,所以,
綜上可得.
科目:高中數學 來源: 題型:
【題目】某超市在元旦期間開展優(yōu)惠酬賓活動,凡購物滿100元可抽獎一次,滿200元可抽獎兩次…依此類推.抽獎箱中有7個白球和3個紅球,其中3個紅球上分別標有10元,10元,20元字樣.每次抽獎要從抽獎箱中有放回地任摸一個球,若摸到紅球,根據球上標注金額獎勵現(xiàn)金;若摸到白球,沒有任何獎勵.
(Ⅰ)一次抽獎中,已知摸中了紅球,求獲得20元獎勵的概率;
(Ⅱ)小明有兩次抽獎機會,用表示他兩次抽獎獲得的現(xiàn)金總額,寫出的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等比數列的公比,前n項和為.若,且是與的等差中項.
(1)求;
(2)數列滿足,,求數列的前2019項和;
(3)設,問數列中是否存在三項,它們可以構成等差數列?若存在,請求出一組適合條件的項;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題“關于的不等式對任意恒成立”,命題“函數在區(qū)間上是增函數”.
(1)若為真,求實數的取值范圍;
(2)若為假,為真,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我校為了讓高一學生更有效率地利用周六的時間,在高一新生第一次摸底考試后采取周六到校自主學習,同時由班主任老師值班,家長輪流值班.一個月后進行了第一次月考,高一數學教研組通過系統(tǒng)抽樣抽取了名學生,并統(tǒng)計了他們這兩次數學考試的優(yōu)良人數和非優(yōu)良人數,其中部分統(tǒng)計數據如下:
(1)請畫出這次調查得到的列聯(lián)表;并判定能否在犯錯誤概率不超過的前提下認為周六到校自習對提高學生成績有效?
(2)從這組學生摸底考試中數學優(yōu)良成績中和第一次月考的數學非優(yōu)良成績中,按分層抽樣隨機抽取個成績,再從這個成績中隨機抽取個,求這個成績來自同一次考試的概率.
下面是臨界值表供參考:
(參考公式: ,其中
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙曲線 的左、右焦點分別為,過作傾斜角為的直線與軸和雙曲線的右支分別交于兩點,若點平分線段,則該雙曲線的離心率是( )
A. B. C. 2 D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據統(tǒng)計,目前微信用戶已達10億,2016年,諸多傳統(tǒng)企業(yè)大佬紛紛嘗試進入微商渠道,讓這個行業(yè)不斷地走向正規(guī)化、規(guī)范化.2017年3月25日,第五屆中國微商博覽會在山東濟南舜耕國際會展中心召開,力爭為中國微商產業(yè)轉型升級,某品牌飲料公司對微商銷售情況進行中期調研,從某地區(qū)隨機抽取6家微商一周的銷售金額(單位:百元)的莖葉圖如圖所示,其中莖為十位數,葉為個位數.
(1)若銷售金額(單位:萬元)不低于平均值的微商定義為優(yōu)秀微商,其余為非優(yōu)秀微商,根據莖葉圖推斷該地區(qū)110家微商中有幾家優(yōu)秀?
(2)從隨機抽取的6家微商中再任取2家舉行消費者回訪調查活動,求恰有1家是優(yōu)秀微商的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com