已知{an}是各項均為負數(shù)的等比數(shù)列,且a3a9=4
a
2
5
,則公比q=
2
2
分析:由{an}是等比數(shù)列,根據(jù)等比數(shù)列的性質(zhì)得到a3a9=a62,又a3a9=4a52,可得a62=4a52,再根據(jù)數(shù)列各項為負數(shù),開方并根據(jù)等比數(shù)列的性質(zhì)可得出公比q的值.
解答:解:∵{an}是等比數(shù)列,
∴a3a9=a62,又a3a9=4a52,
∴a62=4a52,又{an}是各項均為負數(shù),
∴-a6=-2a5,
則公比q=
a6
a5
=2.
故答案為:2
點評:此題考查了等比數(shù)列的性質(zhì),是高考中?嫉念}型,熟練掌握等比數(shù)列的性質(zhì)是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知{an}是各項均為正數(shù)的等差數(shù)列,lga1、lga2、lga4成等差數(shù)列.又bn=
1
a2n
,n=1,2,3,….
(Ⅰ)證明{bn}為等比數(shù)列;
(Ⅱ)如果無窮等比數(shù)列{bn}各項的和S=
1
3
,求數(shù)列{an}的首項a1和公差d.
(注:無窮數(shù)列各項的和即當n→∞時數(shù)列前項和的極限)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是各項均為正數(shù)的等差數(shù)列,lga1,lga2,lga4成等差數(shù)列.又bn=
1
a2n
,n=1,2,3,….
(Ⅰ)證明{bn}為等比數(shù)列;
(Ⅱ)如果數(shù)列{bn}前3項的和等于
7
24
,求數(shù)列{an}的首項a1和公差d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是各項均為正數(shù)的等比數(shù)列a1+a2=2(
1
a1
+
1
a2
),a3+a4+a5=64(
1
a3
+
1
a4
+
1
a5

(Ⅰ)求{an}的通項公式;
(Ⅱ)設bn=(an+
1
an
2,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是各項均為正數(shù)的等比數(shù)列,且a1+a2=2(
1
a1
+
1
a2
),a3+a4=32(
1
a3
+
1
a4
)

(Ⅰ)求{an}的通項公式;
(Ⅱ)設bn=an2+log2an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是各項均為正數(shù)的等比數(shù)列,且a1與a5的等比中項為2,則a2+a4的最小值等于
 

查看答案和解析>>

同步練習冊答案