【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù),),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程是.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)已知直線與曲線交于兩點,且,求實數(shù)的值.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)有半徑為的圓形村落, 兩人同時從村落中心出發(fā), 向北直行, 先向東直行,出村后不久,改變前進方向,沿著與村落周界相切的直線前進,后來恰與相遇.設(shè)兩人速度一定,其速度比為,問兩人在何處相遇?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐中,底面為菱形,,平面,、分別是、上的中點,直線與平面所成角的正弦值為,點在上移動.
(Ⅰ)證明:無論點在上如何移動,都有平面平面;
(Ⅱ)求點恰為的中點時,二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,.
(1)已知為函數(shù)的公共點,且函數(shù)在點處的切線相同,求的值;
(2)若在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關(guān)于的二項式的展開式的二項式系數(shù)之和為1024,常數(shù)項為180.
(1)求和的值;
(2)求展開式中的無理項.(不需求項的表達式,指出無理項的序號即可)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某日A,B,C三個城市18個銷售點的小麥價格如下表:
銷售點序號 | 所屬城市 | 小麥價格(元/噸) | 銷售點序號 | 所屬城市 | 小麥價格(元/噸) |
1 | A | 2420 | 10 | B | 2500 |
2 | C | 2580 | 11 | A | 2460 |
3 | C | 2470 | 12 | A | 2460 |
4 | C | 2540 | 13 | A | 2500 |
5 | A | 2430 | 14 | B | 2500 |
6 | C | 2400 | 15 | B | 2450 |
7 | A | 2440 | 16 | B | 2460 |
8 | B | 2500 | 17 | A | 2460 |
9 | A | 2440 | 18 | A | 2540 |
(1)甲以B市5個銷售點小麥價格的中位數(shù)作為購買價格,乙從C市4個銷售點中隨機挑選2個了解小麥價格.記乙挑選的2個銷售點中小麥價格比甲的購買價格高的個數(shù)為,求的分布列及數(shù)學期望;
(2)如果一個城市的銷售點小麥價格方差越大,則稱其價格差異性越大.請你對A,B,C三個城市按照小麥價格差異性從大到小進行排序(只寫出結(jié)果).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求函數(shù)的極小值;
(Ⅱ)當時,討論的單調(diào)性;
(Ⅲ)若函數(shù)在區(qū)間上有且只有一個零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學要從高一年級甲、乙兩個班級中選擇一個班參加市電視臺組織的“環(huán)保知識競賽”.該校對甲、乙兩班的參賽選手(每班7人)進行了一次環(huán)境知識測試,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖所示,其中甲班學生的平均分是85分,乙班學生成績的中位數(shù)是85.
(1)求的值;
(2)根據(jù)莖葉圖,求甲、乙兩班同學成績的方差的大小,并從統(tǒng)計學角度分析,該校應選擇甲班還是乙班參賽.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知以坐標原點為圓心的圓與拋物線相交于不同的兩點, ,與拋物線的準線相交于不同的兩點, ,且.
(1)求拋物線的方程;
(2)若不經(jīng)過坐標原點的直線與拋物線相交于不同的兩點, ,且滿足.證明直線過定點,并求出點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com