已知
(1)若存在單調(diào)遞減區(qū)間,求的取值范圍;
(2)若時,求證成立;
(3)利用(2)的結(jié)論證明:若
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山西忻州一中等四校高三上學(xué)期第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知
(1)若存在使得≥0成立,求的范圍
(2)求證:當(dāng)>1時,在(1)的條件下,成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東省廣州市高三9月三校聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知
(1)若時,求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍;
(3)令是否存在實(shí)數(shù),當(dāng)是自然對數(shù)的底)時,函數(shù)的最小值是3,
若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年黑龍江省高二上學(xué)期期末考試數(shù)學(xué)文卷 題型:解答題
、、已知
(1)若,求的極小值;
(2)是否存在實(shí)數(shù)使的最小值為3。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知
(1)若存在單調(diào)遞減區(qū)間,求的取值范圍;
(2)若時,求證成立;
(3)利用(2)的結(jié)論證明:若
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com