9.(理科)已知極坐標(biāo)中圓C的方程為ρ=2cos(θ-$\frac{π}{4}$),則圓心的極坐標(biāo)為(  )
A.(1,$\frac{π}{4}$)B.(1,$\frac{3π}{4}$)C.(1,$\frac{π}{4}$)D.(1,$\frac{3π}{4}$)

分析 利用和差公式展開,再利用互化公式可得直角坐標(biāo)方程,即可把圓心坐標(biāo)化為極坐標(biāo).

解答 解:圓C的方程為ρ=2cos(θ-$\frac{π}{4}$),即ρ2=2×$\frac{\sqrt{2}}{2}$ρ(cosθ+sinθ),化為:x2+y2=$\sqrt{2}$x+$\sqrt{2}$y,配方為$(x-\frac{\sqrt{2}}{2})^{2}$+$(y-\frac{\sqrt{2}}{2})^{2}$=1,圓心坐標(biāo)$(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$,化為極坐標(biāo)$(1,\frac{π}{4})$.
故選:C.

點(diǎn)評(píng) 本題考查了和差公式、極坐標(biāo)與直角坐標(biāo)方程互化公式、圓的標(biāo)準(zhǔn)方程,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線:x2=2y,過直線y=2x-3上任意一點(diǎn)P作拋物線的切線,切點(diǎn)分別為A,C
(I)求證:直線AC過定點(diǎn)M,并求出M點(diǎn);
(Ⅱ)記直線AP,CP的斜率分別為k1,k2,若k1•k2=-2,求△ACP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,M為AB的中點(diǎn),經(jīng)過點(diǎn)A作D1M的垂面,該垂面被正方體截得部分的面積是( 。
A.3B.$\frac{3}{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{3\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在等比數(shù)列 {an}中,已知 a1=3,公比 q≠1,等差數(shù)列{bn} 滿足b1=a1,b4=a2,b13=a3
(1)求數(shù)列{an}與 {bn}的通項(xiàng)公式;
(2)記 cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若曲線C為到點(diǎn)(0,1)和(0,-1)距離之和為4的動(dòng)點(diǎn)的軌跡,則曲線C的方程為$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.圓心為點(diǎn)(-1,0)且與y軸相切的圓的標(biāo)準(zhǔn)方程為(x+1)2+y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)f($\frac{x}{x+1}$)=x2-x+1,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,離心率為$\frac{{\sqrt{3}}}{2}$,橢圓上的點(diǎn)到直線$x=-\frac{{5\sqrt{5}}}{2}$的距離的最大值為$\frac{{9\sqrt{5}}}{2}$,傾斜角為45°的直線l交橢圓于不同的兩點(diǎn)A,B.
(1)求橢圓的方程;
(2)已知點(diǎn)M(4,1),當(dāng)直線l不過點(diǎn)M時(shí),求證:直線MA,MB與x軸圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定義在R上的函數(shù)f(x)滿足:①f(-x)=-f(x);②f(x+2)=f(x);③x∈[0,1]時(shí),f(x)=log${\;}_{\frac{3}{4}}$(x2-x+1),則函數(shù)y=f(x)-log3|x|的零點(diǎn)個(gè)數(shù)為( 。
A.8B.6C.4D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案