【題目】共享單車又稱為小黃車,近年來逐漸走進(jìn)了人們的生活,也成為減少空氣污染,緩解城市交通壓力的一種重要手段.為調(diào)查某地區(qū)居民對共享單車的使用情況,從該地區(qū)居民中按年齡用隨機抽樣的方式隨機抽取了人進(jìn)行問卷調(diào)查,得到這人對共享單車的評價得分統(tǒng)計填入莖葉圖,如下所示(滿分分):
(1)請計算這位居民問卷的平均得分;
(2)若成績在分以上問卷中從中任取份,求這份試卷的成績都在以上(含分)的概率;
(3)從成績在分以上(含分)的居民中挑選人參加深入探討,記抽取的個居民中成績?yōu)?/span>分的人數(shù)為,求的分布列與期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的導(dǎo)函數(shù)為,若函數(shù)的圖象關(guān)于直線對稱,且.
(1)求實數(shù)a、b的值;
(2)若函數(shù)恰有三個零點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C:(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,P為雙曲線C上的一點,線段PF1與y軸的交點M恰好是線段PF1的中點,,其中O為坐標(biāo)原點,則雙曲線C的漸近線的斜率與離心率分別是( )
A. ±1, B. 1, C. ±2, D. 2,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,過點作斜率為的直線交拋物線于兩點.
(1)若,求的面積;
(2)過點分別作拋物線的兩條切線,且直線與直線相交于點,問:點是否在某條定直線上?若在,求該定直線的方程;若不在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:
①函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;
②若函數(shù)在上有兩個零點,則的取值范圍是;
③函數(shù)在上單調(diào)遞減;
④當(dāng)時,函數(shù)的最大值為.
上述命題正確的是__________(填序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的焦距為4,且過點.
(1)求橢圓的方程
(2)設(shè)橢圓的上頂點為,右焦點為,直線與橢圓交于、兩點,問是否存在直線,使得為的垂心,若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)g(x)=﹣4sin2()+2圖象上點的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),再向右平移個單位長度,得到函數(shù)f(x)的圖象,則下列說法正確的是( )
A.函數(shù)f(x)在區(qū)間[,]上單調(diào)遞減
B.函數(shù)f(x)的最小正周期為2π
C.函數(shù)f(x)在區(qū)間[,]的最小值為
D.x是函數(shù)f(x)的一條對稱軸
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com