已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0)的對稱中心為M(x0,y0),記函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),f′(x)的導(dǎo)函數(shù)為f″(x),則有f″(x)=0.若函數(shù)f(x)=x3-3x2,則可求出f(
1
2014
)+f(
2
2014
)+f(
3
2014
)+…+f(
4026
2014
)+f(
4027
2014
)的值為
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:由題意對已知函數(shù)求兩次導(dǎo)數(shù)可得圖象關(guān)于點(diǎn)(1,-2)對稱,即f(x)+f(2-x)=-4,而要求的式子可用倒序相加法求解,共有2012對-4和一個(gè)f(1)=-2,可得答案.
解答: 解:由題意f(x)=x3-3x2,則f′(x)=3x2-6x,f″(x)=6x-6,
由f″(x0)=0得x0=1,而f(1)=-2,故函數(shù)f(x)=x3-3x2關(guān)于點(diǎn)(1,-2)對稱,即f(x)+f(2-x)=-4.
所以f(
1
2014
)+f(
2
2014
)+f(
3
2014
)+…+f(
4026
2014
)+f(
4027
2014
)=[f(
1
2014
)+f(
4027
2014
)]+[f(
2
2014
)+f(
4026
2014
)]+…[f(
2013
2014
)+f(
2015
2014
)]+f(
2014
2014
)=4×2013-2=8050;
故答案為:8050.
點(diǎn)評:本題主要考查導(dǎo)數(shù)的基本運(yùn)算,利用條件求出函數(shù)的對稱中心得到f(x)+f(2-x)=-4,是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用lgx,lgy,lgz表示lg
x
y
z2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是圓O的直徑,點(diǎn)C是弧AB的中點(diǎn),點(diǎn)V是圓O所在平面外一點(diǎn),D是AC的中點(diǎn),已知AB=2,VA=VB=VC=2.
(1)求證:AC⊥平面VOD;
(2)求三棱錐C-ABV的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若Sn和Tn分別表示數(shù)列{an}和{bn}的前n項(xiàng)和,對任意正整數(shù)n,有an=-
2n+3
2
,4Tn-12Sn=13n.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn=bn+
5
4
,若
1
c1c2
+
1
c2c3
+…+
1
cncn+1
11
100
,求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足
x+2y-4≤0
x-y-1≤0
x≥1
,則x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a,b滿足a3+3a2+6a=2,b3+3b2+6b=-10,則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知0<a<1,則在同一坐標(biāo)系中,函數(shù)y=a-x,和y=loga(-x)的圖象只可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
3
sinx+cosx)cosx-
1
2

(Ⅰ)用五點(diǎn)作圖法列表,作出函數(shù)f(x)在x∈[0,π]上的圖象簡圖;
(Ⅱ)若f(
a
2
+
π
6
)=
3
5
,-
π
2
<a<0,求sin(2a-
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=kx-k+1與曲線y=
1-x2
恰有兩個(gè)公共點(diǎn),則k的取值范圍(  )
A、(
1
2
,+∞)
B、(0,
1
2
]
C、(0,2]
D、k=0或k∈(-1,1]

查看答案和解析>>

同步練習(xí)冊答案