【題目】在平面直角坐標(biāo)系中,圓,點(diǎn),為拋物線上任意一點(diǎn)(異于原點(diǎn)),過(guò)點(diǎn)作圓的切線為切點(diǎn),則的最小值是___

【答案】3

【解析】

設(shè)Px,y),可得y2=2x,求得圓M的圓心和半徑,求得切線長(zhǎng)|PB|,化簡(jiǎn)可得|PB|為Py軸的距離,結(jié)合拋物線的定義和三點(diǎn)共線取得最值的性質(zhì),即可得到所求最小值.

解:設(shè)Px,y),可得y2=2x,

M:(x﹣1)2+y2=1的圓心M(1,0),半徑為1,

|PB||x|,

即|PB|為Py軸的距離,

拋物線的焦點(diǎn)F,0),準(zhǔn)線方程為x,

可得|PA|+|PB|=|PA|+|PK||PA|+|PF|,

過(guò)A作準(zhǔn)線的垂線,垂足為K,可得AP,K共線時(shí),|PA|+|PK|取得最小值|AK|,

即有|PA|+|PB|的最小值為3.

故答案為:3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)?/span>D={x|x≠0},且滿足對(duì)于任意x1,x2D,有f(x1·x2)=f(x1)+f(x2).

(1)求f(1)的值;

(2)判斷f(x)的奇偶性并證明你的結(jié)論;

(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓,點(diǎn)為拋物線上任意一點(diǎn)(異于原點(diǎn)),過(guò)點(diǎn)作圓的切線,為切點(diǎn),則的最小值是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“雙十二”是繼“雙十一”之后的又一個(gè)網(wǎng)購(gòu)狂歡節(jié),為了刺激“雙十二”的消費(fèi),某電子商務(wù)公司決定對(duì)“雙十一”的網(wǎng)購(gòu)者發(fā)放電子優(yōu)惠券.為此,公司從“雙十一”的網(wǎng)購(gòu)消費(fèi)者中用隨機(jī)抽樣的方法抽取了100人,將其購(gòu)物金額(單位:萬(wàn)元)按照, 分組得到如下頻率分布直方圖

根據(jù)調(diào)查,該電子商務(wù)公司制定了發(fā)放電子優(yōu)惠券的辦法如下:

(1)求購(gòu)物者獲得電子優(yōu)惠券金額的平均數(shù);

(2)從購(gòu)物者中隨機(jī)抽取10人,這10人中獲得電子優(yōu)惠券的人數(shù)為的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),分別是橢圓 的左、右焦點(diǎn),過(guò)點(diǎn)且與軸垂直的直線與橢圓交于兩點(diǎn).若為銳角,則該橢圓的離心率的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于定義域?yàn)?/span>D的函數(shù),若存在區(qū)間,使得同時(shí)滿足,①上是單調(diào)函數(shù),②當(dāng)的定義域?yàn)?/span>時(shí),的值域也為,則稱區(qū)間為該函數(shù)的一個(gè)和諧區(qū)間

1)求出函數(shù)的所有和諧區(qū)間;

2)函數(shù)是否存在和諧區(qū)間?若存在,求出實(shí)數(shù)a,b的值;若不存在,請(qǐng)說(shuō)明理由

3)已知定義在上的函數(shù)和諧區(qū)間,求正整數(shù)k取最小值時(shí)實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次社會(huì)實(shí)踐活動(dòng)中,某數(shù)學(xué)調(diào)研小組根據(jù)車(chē)間持續(xù)5個(gè)小時(shí)的生產(chǎn)情況畫(huà)出了某種產(chǎn)品的總產(chǎn)量(單位:千克)與時(shí)間(單位:小時(shí))的函數(shù)圖像,則以下關(guān)于該產(chǎn)品生產(chǎn)狀況的正確判斷是( ).

A.在前三小時(shí)內(nèi),每小時(shí)的產(chǎn)量逐步增加

B.在前三小時(shí)內(nèi),每小時(shí)的產(chǎn)量逐步減少

C.最后一小時(shí)內(nèi)的產(chǎn)量與第三小時(shí)內(nèi)的產(chǎn)量相同

D.最后兩小時(shí)內(nèi),該車(chē)間沒(méi)有生產(chǎn)該產(chǎn)品

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為

1)求曲線C1C2的直角坐標(biāo)方程;

2)當(dāng)C1C2有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品在近30天內(nèi)每件的銷(xiāo)售價(jià)格p()與時(shí)間t()的函數(shù)關(guān)系是該商品的日銷(xiāo)售量Q()與時(shí)間t()的函數(shù)關(guān)系是Q=-t40(0<t≤30tN)

(1)求這種商品的日銷(xiāo)售金額的解析式;

(2)求日銷(xiāo)售金額的最大值,并指出日銷(xiāo)售金額最大的一天是30天中的第幾天?

查看答案和解析>>

同步練習(xí)冊(cè)答案