【題目】(1)當(dāng)時(shí),求證:;

(2)求的單調(diào)區(qū)間;

(3)設(shè)數(shù)列的通項(xiàng),證明

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析.

【解析】

(1)構(gòu)造函數(shù),對(duì)函數(shù)求導(dǎo)得到函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)的最值,即可得證;(2)直接對(duì)函數(shù)求導(dǎo)得到,分,,,幾種情況得到函數(shù)的單調(diào)性;(3)由題意知, 由(1)知當(dāng)時(shí), 當(dāng)時(shí),,同理:,同理:將式子累加得結(jié)果.

(1)的定義域?yàn)?/span>恒成立;所以函數(shù)上單調(diào)遞減,得時(shí)即:

(2)由題可得,且.

當(dāng)時(shí),當(dāng),所以單調(diào)遞減,

當(dāng),所以單調(diào)遞增,

當(dāng)時(shí),當(dāng),所以單調(diào)遞增,

當(dāng),所以單調(diào)遞減,

當(dāng)時(shí),當(dāng),所以單調(diào)遞增,

當(dāng)時(shí),當(dāng),所以單調(diào)遞增,

當(dāng),所以單調(diào)遞減,

當(dāng)時(shí),當(dāng),所以單調(diào)遞減,

當(dāng),所以單調(diào)遞增,

(3)由題意知.

由(1)知當(dāng)時(shí)

當(dāng)時(shí)

,

同理:令.

同理:令

以上各式兩邊分別相加可得:

所以:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD的底面是直角梯形,,,平面.

)設(shè)為線段的中點(diǎn),求證://平面;

)若,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究家用轎車(chē)在高速公路上的車(chē)速情況,交通部門(mén)對(duì)100名家用轎車(chē)駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車(chē)速情況為:在55名男性駕駛員中,平均車(chē)速超過(guò)的有40人,不超過(guò)的有15人;在45名女性駕駛員中,平均車(chē)速超過(guò)的有20人,不超過(guò)的有25人.

(1)完成下面的列聯(lián)表,并判斷是否有%的把握認(rèn)為平均車(chē)速超過(guò)的人與性別有關(guān).

平均車(chē)速超過(guò)人數(shù)

平均車(chē)速不超過(guò)人數(shù)

合計(jì)

男性駕駛員人數(shù)

女性駕駛員人數(shù)

合計(jì)

(2)以上述數(shù)據(jù)樣本來(lái)估計(jì)總體,現(xiàn)從高速公路上行駛的大量家用轎車(chē)中隨機(jī)抽取3輛,記這3輛車(chē)中駕駛員為男性且車(chē)速超過(guò)的車(chē)輛數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列和數(shù)學(xué)期望.

參考公式與數(shù)據(jù):

,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C經(jīng)過(guò)點(diǎn),且圓心C在直線.

1)求C圓的方程;

2)直線l過(guò)圓C外一點(diǎn),且直線l與圓C只有一個(gè)公共點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

)求證:AA1平面ABC

)求二面角A1-BC1-B1的余弦值;

)證明:在線段BC1存在點(diǎn)D,使得ADA1B,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;

(1)求曲線的極坐標(biāo)方程;

(2)在曲線上取兩點(diǎn) 與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.

【答案】(1);(2)

【解析】試題分析:(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式可得直線的直角坐標(biāo)方程為

,消去參數(shù)可知曲線是圓心為,半徑為的圓,由直線與曲線相切,可得: ;則曲線C的方程為, 再次利用極坐標(biāo)與直角坐標(biāo)的互化公式可得

可得曲線C的極坐標(biāo)方程.

(2)由(1)不妨設(shè)M(),,(),

,

由此可求面積的最大值.

試題解析:(1)由題意可知直線的直角坐標(biāo)方程為,

曲線是圓心為,半徑為的圓,直線與曲線相切,可得: ;可知曲線C的方程為,

所以曲線C的極坐標(biāo)方程為

.

(2)由(1)不妨設(shè)M(),,(),

,

當(dāng) 時(shí),

所以△MON面積的最大值為.

型】解答
結(jié)束】
23

【題目】已知函數(shù)的定義域?yàn)?/span>;

(1)求實(shí)數(shù)的取值范圍;

(2)設(shè)實(shí)數(shù)的最大值,若實(shí)數(shù), , 滿足,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面ABCD,,,EPB的中點(diǎn).

1)證明:平面平面PBC

2)求直線PD與平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,﹣π<φ<0),其導(dǎo)函數(shù)f'(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,底面是邊長(zhǎng)為3的正方形,平面,,與平面所成的角為.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案