分析 由$x∈[0,\frac{π}{2}]$求出$2x-\frac{π}{3}$的范圍,由余弦函數(shù)的性質(zhì)求出cos(2x-$\frac{π}{3}$)的值域,根據(jù)解析式對(duì)a分類(lèi)討論,由原函數(shù)的值域分別列出方程組,求出a、b的值.
解答 解:由$x∈[0,\frac{π}{2}]$得,$2x-\frac{π}{3}∈[-\frac{π}{3},\frac{2π}{3}]$,
∴cos(2x-$\frac{π}{3}$)$∈[-\frac{1}{2},1]$,
當(dāng)a>0時(shí),∵函數(shù)的值域是[-5,1],
∴$\left\{\begin{array}{l}{2a×1+b=1}\\{2a×(-\frac{1}{2})+b=-5}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=2}\\{b=-3}\end{array}\right.$,
當(dāng)a<0時(shí),∵函數(shù)的值域是[-5,1],
∴$\left\{\begin{array}{l}{2a×1+b=-5}\\{2a×(-\frac{1}{2})+b=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-2}\\{b=-1}\end{array}\right.$,
綜上可得,$\left\{\begin{array}{l}{a=2}\\{b=-3}\end{array}\right.$或$\left\{\begin{array}{l}{a=-2}\\{b=-1}\end{array}\right.$.
點(diǎn)評(píng) 本題主要考查了余弦函數(shù)的定義域和值域,以及分類(lèi)討論思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 20($\sqrt{6}$+$\sqrt{2}$) | B. | 20($\sqrt{6}$-$\sqrt{2}$) | C. | 20($\sqrt{6}$+$\sqrt{3}$) | D. | 20($\sqrt{6}$-$\sqrt{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{12}{5}$ | B. | $\frac{24}{25}$ | C. | $\frac{8}{5}$ | D. | $\frac{2\sqrt{6}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com