1.在四面體S-ABCD中,$AB⊥BC,AB=BC=\sqrt{2}$SA=SC=SB=2,則該四面體外接球的表面積是( 。
A.$\frac{4}{3}π$B.$\frac{8}{3}π$C.$\frac{10}{3}π$D.$\frac{16}{3}π$

分析 由題意,△ABC的外心是AC的中點(diǎn)O′,SO′⊥平面ABC,球心O在SO′上,利用勾股定理求出半徑,即可求出四面體外接球的表面積.

解答 解:由題意,△ABC的外心是AC的中點(diǎn)O′,SO′⊥平面ABC,球心O在SO′上,設(shè)OO′=d,則($\sqrt{3}$-d)2=1+d2,
∴d=$\frac{\sqrt{3}}{3}$,r=$\sqrt{1+\frac{1}{3}}$=$\frac{2\sqrt{3}}{3}$,
∴該四面體外接球的表面積是$4π•\frac{4}{3}$=$\frac{16}{3}$π,
故選:D.

點(diǎn)評(píng) 本題考查四面體外接球的表面積,考查學(xué)生的計(jì)算能力,確定球心的位置是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.等差數(shù)列{an}中a2=5,a6=21.
(1)求{an}的通項(xiàng)公式及前n項(xiàng)和Sn;
(2)設(shè)${b_n}=\frac{2}{{{S_n}+5n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若“-2<x<3”是“x2+mx-2m2<0(m>0)”的充分不必要條件,則實(shí)數(shù)m的取值范圍是( 。
A.m≥1B.m≥2C.m≥3D.m≥4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若a=33(10),b=52(6),c=11111(2),則三個(gè)數(shù)的大小關(guān)系是a>b>c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知全集U=R,集合A={x|-1<x<2},集合B={x|0<x<3},則集合∁U(A∩B)=( 。
A.{x|x≤0或x≥2}B.{x|x<0或x>2}C.{x|x<-1或x>3}D.{x|x≤-1或x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,畫一個(gè)邊長為2的正三角形,再將這個(gè)正三角形各邊的中點(diǎn)相連得到第二個(gè)正三角形,依此類推,一共畫了5個(gè)正三角形.那么這五個(gè)正三角形的面積之和等于( 。
A.2$\sqrt{3}$B.$\frac{21}{16}$$\sqrt{3}$C.$\frac{85}{64}$$\sqrt{3}$D.$\frac{341}{256}$$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知復(fù)數(shù)z=3+bi(b∈R),且(1+3i)•z為純虛數(shù).
(1)求復(fù)數(shù)z;      
(2)若w=$\frac{z}{2+i}$,求復(fù)數(shù)w的模|w|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ-2cosθ-6sinθ+$\frac{1}{ρ}$=0,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=3+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)).
(1)求曲線C的普通方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),點(diǎn)P的坐標(biāo)為(3,3),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,四邊形ABCD與BDEF均為菱形,∠DAB=∠DBF=60°,且FA=FC,AC、BD交于點(diǎn)O.
(I)求證:FC∥平面EAD;
(II)求證:AC⊥平面BDEF.
(III)求二面角F-AB-C(銳角)的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案