【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x.現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,根據(jù)圖象:

(1)寫出函數(shù)f(x),x∈R的增區(qū)間并將圖象補(bǔ)充完整;
(2)寫出函數(shù)f(x),x∈R的解析式;
(3)若函數(shù)g(x)=f(x)﹣4ax+2,x∈[1,3],求函數(shù)g(x)的最小值.

【答案】
(1)解:如圖,根據(jù)偶函數(shù)的圖象關(guān)于y軸對稱,可作出f(x)的圖象,,

則f(x)的單調(diào)遞增區(qū)間為(﹣1,0),(1,+∞)


(2)解:令x>0,則﹣x<0,∴f(﹣x)=x2﹣2x

∵函數(shù)f(x)是定義在R上的偶函數(shù),

∴f(x)=f(﹣x)=x2﹣2x

∴解析式為f(x)=


(3)解:g(x)=x2﹣2x﹣4ax+2,對稱軸為x=2a+1,

當(dāng)2a+1≤1時(shí),g(1)=1﹣4a為最小;

當(dāng)1<2a+1≤3時(shí),g(2a+1)=﹣4a2﹣4a+1為最小;

當(dāng)2a+1>3時(shí),g(3)=5﹣12a為最;

∴g(x)min=


【解析】(1)根據(jù)偶函數(shù)的圖象關(guān)于y軸對稱,可作出f(x)的圖象,由圖象可得f(x)的單調(diào)遞增區(qū)間;(2)令x>0,則﹣x<0,根據(jù)條件可得f(﹣x)=x2﹣2x,利用函數(shù)f(x)是定義在R上的偶函數(shù),可得f(x)=f(﹣x)=x2﹣2x,從而可得函數(shù)f(x)的解析式;(3)先求出拋物線對稱軸x=2a﹣﹣1,然后分當(dāng)2a+1≤1時(shí),當(dāng)1<2a+1≤2時(shí),當(dāng)2a+1>2時(shí)三種情況,根據(jù)二次函數(shù)的增減性解答.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)奇偶性的性質(zhì)的相關(guān)知識,掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司研發(fā)出一款產(chǎn)品,批量生產(chǎn)前先在某城市銷售30天進(jìn)行市場調(diào)查.調(diào)查結(jié)果發(fā)現(xiàn):日銷量與天數(shù)的對應(yīng)關(guān)系服從圖①所示的函數(shù)關(guān)系:每件產(chǎn)品的銷售利潤與天數(shù)的對應(yīng)關(guān)系服從圖②所示的函數(shù)關(guān)系.圖①由拋物線的一部分(為拋物線頂點(diǎn))和線段組成.

(Ⅰ)設(shè)該產(chǎn)品的日銷售利潤 ,分別求出 , 的解析式,

(Ⅱ)若在30天的銷售中,日銷售利潤至少有一天超過8500元,則可以投入批量生產(chǎn),該產(chǎn)品是否可以投入批量生產(chǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)袋中裝有四個(gè)形狀大小完全相同的球,球的編號分別為1,2,3,4.
(Ⅰ)從袋中隨機(jī)抽取兩個(gè)球,求取出的球的編號之和不大于4的概率;
(Ⅱ)先從袋中隨機(jī)取一個(gè)球,該球的編號為m,將球放回袋中,然后再從袋中隨機(jī)取一個(gè)球,該球的編號為n,求n<m+2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是奇函數(shù)。

(1)求實(shí)數(shù)m的值;

(2)判斷函數(shù)f(x)(1,+∞)上的單調(diào)性,并給出證明;

(3)當(dāng)x(n,a-2)時(shí),函數(shù)f(x)的值域是(1,+∞),求實(shí)數(shù)an的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+c,(a,b,c∈R)滿足,對任意實(shí)數(shù)x,都有f(x)≥x,且當(dāng)x∈(1,3)時(shí),有f(x)≤ (x+2)2成立.
(1)證明:f(2)=2;
(2)若f(﹣2)=0,求f(x)的表達(dá)式;
(3)在(2)的條件下,設(shè)g(x)=f(x)﹣ x,x∈[0,+∞),若g(x)圖象上的點(diǎn)都位于直線y= 的上方,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】穩(wěn)定房價(jià)是我國今年實(shí)施宏觀調(diào)控的重點(diǎn),國家最近出臺的一系列政策已對各地的房地產(chǎn)市場產(chǎn)生了影響.北京市某房地產(chǎn)介紹所對本市一樓群在今年的房價(jià)作了統(tǒng)計(jì)與預(yù)測:發(fā)現(xiàn)每個(gè)季度的平均單價(jià)y(每平方米面積的價(jià)格,單位為元)與第x季度之間近似滿足:y=500sin(ωx+)+9500 (>0),已知第一、二季度平均單價(jià)如下表所示:

x

1

2

3

y

10000

9500

則此樓群在第三季度的平均單價(jià)大約是
A.10000元
B.9500元
C.9000元
D.8500元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

(I)當(dāng)時(shí),求函數(shù)的最小值;

(Ⅱ)若函數(shù)上有零點(diǎn),求實(shí)數(shù)的范圍;

III)證明不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)f(x)= ,存在一個(gè)正數(shù)b,使得f(x)的定義域和值域相同,則非零實(shí)數(shù)a的值為(
A.2
B.﹣2
C.﹣4
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列、,其中, ,數(shù)列滿足,,數(shù)列滿足

(1)求數(shù)列、的通項(xiàng)公式;

(2)是否存在自然數(shù),使得對于任意恒成立?若存在,求出的最小值;

(3)若數(shù)列滿足,求數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊答案