精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

(1)當時,求函數的值域;

(2)若函數的最大值是,求的值;

(3)已知,若存在兩個不同的正數,當函數的定義域為時,的值域為,求實數的取值范圍.

【答案】(1) (2)(3)

【解析】

(1)時寫出函數表達式,根據真數范圍求解函數值域即可。(2)設換元真數部分為關于的一元二次函數,又有最大值,所以開口只能向下,即,在對稱軸處取得最大值,即可求出的范圍。(3)較易判斷為增函數,函數的定義域為時,的值域為可理解為函數有兩個交點正數交點,,另外將進行換元即可轉化成關于的一個一元二次函數求解。

(1)時,

因為,所以

所以此時的值域是

(2)設,則,若此時,開口向上沒有最大值。由第一問可知)時也不滿足,所以開口只能向下,即且此時對稱軸

時,最大值在對稱軸處取得,

解出(舍)

所以。

(3)當時,設,設真數為,此時對稱軸,所以當時m為增函數,即為增函數。

所以函數的定義域為時,的值域為,可理解為函數有兩個交點正數交點,,

有兩個正根。

,設

所以

有兩個大于1的根。

所以此時只需即可,即

,所以。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).

(1)若直線l過拋物線C的焦點,求拋物線C的方程;

(2)當p=1時,若拋物線C上存在關于直線l對稱的相異兩點P和Q.求線段PQ的中點M的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)當時,求曲線在點處的切線方程;

(Ⅱ)若函數上單調遞減,試求的取值范圍;

(Ⅲ)若函數的最小值為,試求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出以下命題,其中真命題的個數是( )

①若“”是假命題,則“”是真命題;

②命題“若,則”為真命題;

③已知空間任意一點和不共線的三點,,,若,則,,四點共面;

④直線與雙曲線交于兩點,若,則這樣的直線有3條;

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】

某初級中學共有學生2000名,各年級男、女生人數如下表:


初一年級

初二年級

初三年級

女生

373

x

y

男生

377

370

z

已知在全校學生中隨機抽取1名,抽到初二年級女生的概率是0.19.

x的值;

現用分層抽樣的方法在全校抽取48名學生,問應在初三年級抽取多少名?

已知y245,z245,求初三年級中女生比男生多的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線,則下列結論正確的是(

A.直線的傾斜角是B.若直線

C.到直線的距離是D.與直線平行的直線方程是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】

(1)求在[0,2]上的最值;

(2)如果對于任意的,都有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】漢字聽寫大會不斷創(chuàng)收視新高,為了避免“書寫危機”,弘揚傳統文化,某市大約10萬名市民進行了漢字聽寫測試現從某社區(qū)居民中隨機抽取50名市民的聽寫測試情況,發(fā)現被測試市民正確書寫漢字的個數全部在160到184之間,將測試結果按如下方式分成六組:第1組,第2組,,第6組,如圖是按上述分組方法得到的頻率分布直方圖.

若電視臺記者要從抽取的市民中選1人進行采訪,求被采訪人恰好在第2組或第6組的概率;

試估計該市市民正確書寫漢字的個數的平均數與中位數;

已知第4組市民中有3名男性,組織方要從第4組中隨機抽取2名市民組成弘揚傳統文化宣傳隊,求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雞的產蛋量與雞舍的溫度有關,為了確定下一個時段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度 (單位:),對某種雞的時段產蛋量(單位:) 和時段投入成本(單位:萬元)的影響,為此,該企業(yè)收集了7個雞舍的時段控制溫度和產蛋量的數據,對數據初步處理后得到了如圖所示的散點圖和表中的統計量的值.

其中.

(1)根據散點圖判斷,哪一個更適宜作為該種雞的時段產蛋量關于雞舍時段控制溫度的回歸方程類型?(給判斷即可,不必說明理由)

(2)若用作為回歸方程模型,根據表中數據,建立關于的回歸方程;

(3)已知時段投入成本的關系為,當時段控制溫度為時,雞的時段產蛋量及時段投入成本的預報值分別是多少?

附:①對于一組具有線性相關關系的數據,其回歸直線的斜率和截距的最小二乘估計分別為,.

查看答案和解析>>

同步練習冊答案