20.如圖,網格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積為( 。
A.$20+\sqrt{5}π$B.$24+\sqrt{5}π$C.$20+(\sqrt{5}-1)π$D.$24+(\sqrt{5}-1)π$

分析 由已知中的三視圖可得:該幾何體為邊長為2的正方體中挖去一個圓錐,數(shù)形結合可得答案.

解答 解:該幾何體直觀圖為邊長為2的正方體中挖去一個如圖所示的圓錐,

∴該幾何體的表面積為S=6×22+π×1×$\sqrt{{1}^{2}+{2}^{2}}$-π=24+π($\sqrt{5}$-1),
故選D.

點評 本題考查的知識點是由三視圖求幾何體的表面積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對應的幾何量是解題的關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.已知等差數(shù)列{an}的前n項和為Sn,且S21=42,若記bn=2${\;}^{{a}_{11}^{2}-{a}_{9}-{a}_{13}}$,則數(shù)列{bn}( 。
A.是等差數(shù)列但不是等比數(shù)列B.是等比數(shù)列但不是等差數(shù)列
C.既是等差數(shù)列又是等比數(shù)列D.既不是等差數(shù)列又不是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知向量$\vec a=(1,cos2x),\vec b=(sin2x,-\sqrt{3})$,函數(shù)f(x)=$\overrightarrow a•\overrightarrow b$.
(1)求函數(shù)f(x)的單調增區(qū)間;
(2)若$f({\frac{θ}{2}+\frac{2π}{3}})=\frac{6}{5}$,求cos2θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若集合A={x|-3<x<2},B={x|0<x<3},則A∩B=( 。
A.{x|-3<x<0}B.{x|-3<x<3}C.{x|0<x<2}D.{x|0<x<3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知過點M(1,-1)的直線l與橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$相交于A,B兩點,若點M是AB的中點,則直線l的方程為3x-4y-7=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.設0≤x<2π,且$\sqrt{1-sin2x}$=sinx-cosx,則x的取值范圍是$[\frac{π}{4},\frac{5π}{4}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且在區(qū)間[0,1]上單調遞減,則將$f({-\frac{5}{2}})$,f(7),f(4)從小到大順序排列為$f(7)<f({-\frac{5}{2}})<f(4)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.如圖所示的程序框圖,當輸入x的值為3時,則其輸出的結果是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.解關于x不等式x2-x-a(a-1)>0(a∈R).

查看答案和解析>>

同步練習冊答案