下列式子正確的是(  )
A、
AB
-
AC
=
BC
B、
a
•(
b
c
)=(
a
b
)•
c
C、λ(μa)=(λμ)
a
D、
O
AB
=
O
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:A.由
AB
-
AC
=
CB
即可判斷出;
B.由于
a
c
不一定共線,因此不正確;
C.由向量的運(yùn)算律即可判斷出;
D.
0
AB
=0.
解答: 解:A.∵
AB
-
AC
=
CB
,∴不正確;
B.∵
a
c
不一定共線,∴不正確;
C.由向量的運(yùn)算律可知正確;
D.
0
AB
=0,因此不正確.
故選:C.
點(diǎn)評(píng):本題考查了向量的運(yùn)算法則及其運(yùn)算律、向量共線定理,考查了推理能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,P為60°的二面角α-l-β內(nèi)一點(diǎn),P到二面角兩個(gè)面的距離分別為2、3,A、B是二面角的兩個(gè)面內(nèi)的動(dòng)點(diǎn),則△PAB周長的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=6x3(a+2)x2+2ax.
(1)若f(x)的兩個(gè)極值點(diǎn)為x1,x2,且x1•x2=1,求實(shí)數(shù)a的值;
(2)是否存在實(shí)數(shù)a,使得f(x)是(-∞,+∞)上的單調(diào)函數(shù)?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+
π
6
)+m(A>0,ω>0)的最大值為3,最小值為-5,其圖象相鄰兩條對(duì)稱軸之間的距離為
π
2
,則A、ω、m的值分別為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在鈍角三角形ABC中,a=1,b=2,則最大邊c的取值范圍是( 。
A、(
3
,3)
B、(
5
,3)
C、(2,3)
D、(
6
,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,-2)若向量
AB
a
=(2,3)同向,|
AB
|=
13
,則點(diǎn)B的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x||x-a|<1},B={x|(x-1)(5-x)>0},若A∩B=∅,則實(shí)數(shù)a的取值范圍是( 。
A、{a|0≤a≤6}
B、{a|a≤2或a≥4}
C、{a|a≤0或a≥6}
D、{a|2≤a≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(X)的定義域?yàn)椋?,+∞)且滿足2f(x)+f(
1
x
)=2lnx+
a(2x+1)
x+1

(1)若a=-8,判斷f(x)在定義域上的單調(diào)性;
(2)若f(x)在定義域上有兩個(gè)極值點(diǎn)x1,x2(x1≠x2),求證:f(x1)+f(x2)≥
f(x)+2
x
-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x+4y+1=0和圓x2+y2-6x+2y+9=0的位置關(guān)系是( 。
A、外離B、外切C、相交D、內(nèi)切

查看答案和解析>>

同步練習(xí)冊答案