精英家教網 > 高中數學 > 題目詳情

【題目】某水果種植基地引進一種新水果品種,經研究發(fā)現該水果每株的產量(單位:)和與它“相近”的株數具有線性相關關系(兩株作物“相近”是指它們的直線距離不超過),并分別記錄了相近株數為0,1,2,3,4時每株產量的相關數據如下:

0

1

2

3

4

15

12

11

9

8

(1)求出該種水果每株的產量關于它“相近”株數的回歸方程;

(2)該種植基地在如圖所示的長方形地塊的每個格點(橫縱直線的交點)處都種了一株該種水果,其中每個小正方形的面積都為,現從所種的該水果中隨機選取一株,試根據(1)中的回歸方程,預測它的產量的平均數.

附:回歸方程中斜率和截距的最小二乘法估計公式分別為:,.

【答案】(1)(2)

【解析】

1)計算出,,代入求出系數,求出回歸方程即可;(2)代入的值,求出的預報值,求平均數即可.

解:(1)由題意得:,

,

,

所以,

,

所以.

(2)由回歸方程得:

時,,

時,,

時,,

故平均數為:.

所以一株產量的平均數為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知圓的面積為且與軸、軸分別交于兩點.

1)求圓的方程;

(2)若直線與線段相交,求實數的取值范圍;

(3)試討論直線與(1)小題所求圓的交點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,棱長為2,M,N分別為A1B,AC的中點.

(1)證明:MN//B1C;

(2)求A1B與平面A1B1CD所成角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,矩形中,的中點,將沿直線翻折成,連結,的中點,則在翻折過程中,下列說法中所有正確的序號是_______.

①存在某個位置,使得;

②翻折過程中,的長是定值;

③若,則;

④若,當三棱錐的體積最大時,三棱錐的外接球的表面積是.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某水果種植基地引進一種新水果品種,經研究發(fā)現該水果每株的產量(單位:)和與它“相近”的株數具有線性相關關系(兩株作物“相近”是指它們的直線距離不超過),并分別記錄了相近株數為0,1,2,3,4時每株產量的相關數據如下:

0

1

2

3

4

15

12

11

9

8

(1)求出該種水果每株的產量關于它“相近”株數的回歸方程;

(2)有一種植戶準備種植該種水果500株,且每株與它“相近”的株數都為,計劃收獲后能全部售出,價格為10元,如果收入(收入=產量×價格)不低于25000元,則的最大值是多少?

(3)該種植基地在如圖所示的直角梯形地塊的每個交叉點(直線的交點)處都種了一株該種水果,其中每個小正方形的邊長和直角三角形的直角邊長都為,已知該梯形地塊周邊無其他樹木影響,若從所種的該水果中隨機選取一株,試根據(1)中的回歸方程,預測它的產量的分布列與數學期望.

附:回歸方程中斜率和截距的最小二乘法估計公式分別為:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】1)已知圓過點,且與直線相切于點,求圓的方程;

2)已知圓軸相切,圓心在直線上,且圓被直線截得的弦長為,求圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(多選題)設正實數滿足,則()

A. 有最小值4B. 有最小值

C. 有最大值D. 有最小值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,橢圓與圓相切,并且橢圓上動點與圓上動點間距離最大值為.

1)求橢圓的方程;

2)過點作兩條互相垂直的直線,交于兩點,與圓的另一交點為,求面積的最大值,并求取得最大值時直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓與直線相切,圓心在軸上,且直線被圓截得的弦長為

1)求圓的方程;

2)過點作斜率為的直線與圓交于兩點,若直線的斜率乘積為,且,求的值.

查看答案和解析>>

同步練習冊答案