3.全世界越來越關(guān)注環(huán)境保護(hù)問題,遼寧省某監(jiān)測站點于2016年8月某日起連續(xù)x天監(jiān)測空氣質(zhì)量指數(shù)(AQI),數(shù)據(jù)統(tǒng)計如下:
空氣質(zhì)量指數(shù)(μg/m30-5051-100101-150151-200201-250
空氣質(zhì)量等級空氣優(yōu)空氣良輕度污染中度污染重度污染
天數(shù)2040y105
(Ⅰ)根據(jù)所給統(tǒng)計表和頻率分布直方圖中的信息求出x、y的值,并完成頻率分布直方圖;
(Ⅱ)在空氣質(zhì)量指數(shù)分別為51-100和151-200的監(jiān)測數(shù)據(jù)中,用分層抽樣的方法抽取5天,從中任意選取2天,求事件A“兩天空氣都為良”發(fā)生的概率.

分析 (Ⅰ)由所給統(tǒng)計表和頻率分布直方圖中的信息能求出x、y的值,并完成頻率分布直方圖.
(Ⅱ)在空氣質(zhì)量指數(shù)為51-100和151-200的監(jiān)測天數(shù)中分別抽取4天和1天,在所抽取的5天中,將空氣質(zhì)量指數(shù)為51-100的4天分別記為a,b,c,d;將空氣污染指數(shù)為151-200的1天記為e,由此利用列舉法能求出事件A“兩天空氣都為良”發(fā)生的概率.

解答 (本小題滿分12分)
解:(Ⅰ)∵$0.004×50=\frac{20}{x}$,∴x=100…(1分)
∵20+40+y+10+5=100,∴y=25…(2分)
完成頻率分布直方圖,如下圖:
…(5分)
(Ⅱ)在空氣質(zhì)量指數(shù)為51-100和151-200的監(jiān)測天數(shù)中分別抽取4天和1天,
在所抽取的5天中,將空氣質(zhì)量指數(shù)為51-100的4天分別記為a,b,c,d;
將空氣污染指數(shù)為151-200的1天記為e,…(6分)
從中任取2天的基本事件分別為(a,b),(a,c),(a,d),(a,e),
(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)共10種,…(8分)
其中事件A“兩天空氣都為良”包含的基本事件為:
(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共6種,…(10分)
所以事件A“兩天都為良”發(fā)生的概率是P(A)=$\frac{6}{10}$=$\frac{3}{5}$.…(12分)

點評 本題考查頻率分布直方圖的應(yīng)用,考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意列舉法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=$\sqrt{3}$sinx•cosx+cos2x,銳角△ABC的三個角A,B,C所對的邊分別為a,b,c.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若f(C)=1,求m=$\frac{{a}^{2}+^{2}+{c}^{2}}{ab}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.命題p:“?x∈N+,($\frac{1}{2}$)x≤$\frac{1}{2}$”的否定為( 。
A.?x∈N+,($\frac{1}{2}$)x>$\frac{1}{2}$B.?x∉N+,($\frac{1}{2}$)x>$\frac{1}{2}$C.?x∉N+,($\frac{1}{2}$)x>$\frac{1}{2}$D.?x∈N+,($\frac{1}{2}$)x>$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知平面向量$\overrightarrow{a}$=(k,3),$\overrightarrow$=(1,4),若$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)k為( 。
A.-12B.12C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知定義域為{x|x≠0}的偶函數(shù)f(x),其導(dǎo)函數(shù)為f′(x),對任意正實數(shù)x滿足xf′(x)>-2f(x),若g(x)=x2f(x),則不等式g(x)<g(1)的解集是( 。
A.(-∞,1)B.(-∞,0)∪(0,1)C.(-1,1)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$,則以點$(2,\frac{3}{2})$為中點的弦所在的直線方程為( 。
A.8x-6y-7=0B.3x+4y=0C.3x+4y-12=0D.6x+8y-25=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若點P是方程$\sqrt{{{(x-5)}^2}+{y^2}}-\sqrt{{{(x+5)}^2}+{y^2}}=6$所表示的曲線上的點,同時P又是直線y=4上的點,則點P的橫坐標(biāo)為$-3\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,內(nèi)角A、B、C所對的邊分別為a,b,c,sinC-sinA(cosB+$\frac{{\sqrt{3}}}{3}sinB$)=0
(1)求A;
(2)若$a=4\sqrt{3}$,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求適合下列條件的橢圓的標(biāo)準(zhǔn)方程
(1)焦點在x軸上,焦距為4,并且經(jīng)過點P(3,$-2\sqrt{6}$)
(2)焦距為8,離心率為0.8.

查看答案和解析>>

同步練習(xí)冊答案