13.設實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}2x+y-6≥0\\ x+2y-6≤0\\ y≥0\end{array}\right.$,則$\frac{{2{y^2}-xy}}{x^2}$的最小值是( 。
A.$-\frac{1}{8}$B.$\frac{1}{8}$C.0D.1

分析 作出不等式組對應的平面區(qū)域,$\frac{{2{y^2}-xy}}{x^2}$=2$(\frac{y}{x})^{2}-\frac{y}{x}$,最利用k=$\frac{y}{x}$的幾何意義,結合直線斜率公式進行求解即可

解答 解:作出不等式組對應的平面區(qū)域,k=$\frac{y}{x}$的幾何意義為區(qū)域內(nèi)的點到原點的斜率,
由圖象可知,OA的斜率最大,由$\left\{\begin{array}{l}{2x+y-6=0}\\{x+2y-6=0}\end{array}\right.$得A(2,2),
∴0≤k≤1,∴$\frac{{2{y^2}-xy}}{x^2}$=2$(\frac{y}{x})^{2}-\frac{y}{x}$=2k2-k=2(k-$\frac{1}{4}$)2-$\frac{1}{8}$$≥-\frac{1}{8}$,
故選:A.

點評 本題考查簡單線性規(guī)劃,涉及直線的斜率公式,準確作圖是解決問題的關鍵,屬中檔題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.設函數(shù)f(x)=ex(sinx-cosx)(0≤x≤4π),則函數(shù)f(x)的所有極大值之和為( 。
A.eB.eπ+eC.eπ-eD.eπ+e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.等腰直角三角形ABC中,A=90°,AB=AC=2,D是斜邊BC上一點,且BD=3DC,則$\overrightarrow{AD}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某種商品價格與該商品日需求量之間的幾組對照數(shù)據(jù)如表:
價格x(元/kg)1015202530
日需求量y(kg)1110865
(1)求y關于x的線性回歸方程;
(2)利用(1)中的回歸方程,當價格x=40元/kg時,日需求量y的預測值為多少?
參考公式:線性回歸方程$y=bx+\hat a$,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n•{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{(x_i^{\;}-\overline x)}^2}}}},\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知$cosα-sinα=\frac{1}{2}$,則sinαcosα等于(  )
A.$\frac{3}{8}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知定義在R上的偶函數(shù)f(x),當x≥0時,f(x)=2x+3.
(1)求f(x)的解析式;
(2)若f(a)=7,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若函數(shù)y=f(x)的定義域是[1,9],則函數(shù)y=f(3x)的定義域為[0,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在△ABC中,角A,B,C的對邊分別為a,b,c,若a+c=8,cosB=$\frac{1}{4}$.
(1)若$\overrightarrow{BA}•\overrightarrow{BC}$=4,求b的值;
(2)若sinA=$\frac{{\sqrt{6}}}{4}$,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率e=$\frac{1}{2}$,右焦點到右頂點的距離為1.
(1)求橢圓C的方程;
(2)A,B兩點為橢圓C的左右頂點,P為橢圓上異于A,B的一點,記直線PA,PB斜率分別為KPA,KPB,求KPA•KPB的值.

查看答案和解析>>

同步練習冊答案