8.已知$cosα-sinα=\frac{1}{2}$,則sinαcosα等于( 。
A.$\frac{3}{8}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{3}{2}$

分析 由$cosα-sinα=\frac{1}{2}$,兩邊平方化簡(jiǎn)即可得出.

解答 解:由$cosα-sinα=\frac{1}{2}$,兩邊平方可得:1-2sinαcosα=$\frac{1}{4}$,解得sinαcosα=$\frac{3}{8}$.
故選:A.

點(diǎn)評(píng) 本題考查了三角函數(shù)平方關(guān)系,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.命題“?x0∈R,使得$x_0^2>{e^{x_0}}$”的否定是(  )
A.?x0∈R,使得$x_0^2≤{e^{x_0}}$B.?x0∈R,使得$x_0^2≤{e^{x_0}}$
C.?x0∈R,使得$x_0^2>{e^{x_0}}$D.?x0∈R,使得$x_0^2>{e^{x_0}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.平面內(nèi)有點(diǎn)A(2,0),C(cosα,sinα),其中α∈(0,π),點(diǎn)O為坐標(biāo)原點(diǎn),且|$\overrightarrow{OA}$+$\overrightarrow{OC}$|=$\sqrt{7}$.
(1)求α的值;
(2)求向量$\overrightarrow{OA}$與$\overrightarrow{AC}$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)定義域?yàn)镽,若存在常數(shù)f(x),使$|f(x)|≤\frac{k}{2017}|x|$對(duì)所有實(shí)數(shù)都成立,則稱函數(shù)f(x)為“期望函數(shù)”,給出下列函數(shù):
①f(x)=x2②f(x)=xex③$f(x)=\frac{x}{{{x^2}-x+1}}$④$f(x)=\frac{x}{{{e^x}+1}}$
其中函數(shù)f(x)為“期望函數(shù)”的是③④.(寫出所有正確選項(xiàng)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)中,最小值為4的是( 。
A.y=x+$\frac{4}{x}$B.y=sinx+$\frac{4}{sinx}$(0<x<π)
C.y=ex+4e-xD.y=log3x+4logx3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}2x+y-6≥0\\ x+2y-6≤0\\ y≥0\end{array}\right.$,則$\frac{{2{y^2}-xy}}{x^2}$的最小值是(  )
A.$-\frac{1}{8}$B.$\frac{1}{8}$C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知全集U={0,1,3,4,5,6,8},集合A={1,4,5,8},B={2,6},則集合(∁UA)∪B=( 。
A.{1,2,5,8}B.{0,3,6}C.{0,2,3,6}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.男隊(duì)有號(hào)碼1,2,3的三名乒乓球運(yùn)動(dòng)員,女隊(duì)有號(hào)碼為1,2,3,4的四名乒乓球運(yùn)動(dòng)員,現(xiàn)兩隊(duì)各出一名運(yùn)動(dòng)員比賽一場(chǎng),則出場(chǎng)的兩名運(yùn)動(dòng)員號(hào)碼不同的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知直線x=-2交橢圓$\frac{x^2}{25}+\frac{y^2}{21}=1$于A、B兩點(diǎn),橢圓的右焦點(diǎn)為F點(diǎn),則△ABF的周長(zhǎng)為20.

查看答案和解析>>

同步練習(xí)冊(cè)答案