【題目】若f(x)=x3+ax2+bx﹣a2﹣7a在x=1處取得極大值10,則 的值為(
A.
B.
C.
D.

【答案】C
【解析】解:∵f(x)=x3+ax2+bx﹣a2﹣7a, ∴f′(x)=3x2+2ax+b,
又f(x)=x3+ax2+bx﹣a2﹣7a在x=1處取得極大值10,
∴f′(1)=3+2a+b=0,f(1)=1+a+b﹣a2﹣7a=10,
∴a2+8a+12=0,
∴a=﹣2,b=1或a=﹣6,b=9.
當(dāng)a=﹣2,b=1時(shí),f′(x)=3x2﹣4x+1=(3x﹣1)(x﹣1),
當(dāng) <x<1時(shí),f′(x)<0,當(dāng)x>1時(shí),f′(x)>0,
∴f(x)在x=1處取得極小值,與題意不符;
當(dāng)a=﹣6,b=9時(shí),f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3)
當(dāng)x<1時(shí),f′(x)>0,當(dāng)<x<3時(shí),f′(x)<0,
∴f(x)在x=1處取得極大值,符合題意;
=﹣ =﹣ ,
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí),掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣
(1)利用定義證明:函數(shù)f(x)在區(qū)間(0,+∞)上為增函數(shù);
(2)當(dāng)x∈(0,1)時(shí),tf(2x)≥2x﹣1恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,點(diǎn)E在CC1上且C1E=3EC
(1)證明:A1C⊥平面BED;
(2)求二面角A1﹣DE﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 ,點(diǎn) ,求:
(1)過點(diǎn) 的圓的切線方程;
(2) 點(diǎn)是坐標(biāo)原點(diǎn),連接 ,求 的面積 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在空間中,給出下面四個(gè)命題,則其中正確命題的個(gè)數(shù)為( )
①過平面 外的兩點(diǎn),有且只有一個(gè) 平面與平面 垂直;
②若平面 內(nèi)有不共線三點(diǎn)到平面 的距離都相等,則
③若直線 與平面內(nèi)的無數(shù)條直線垂直,則 ;
④兩條異面直線在同一平面內(nèi)的射影一定是兩平行線;
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長(zhǎng)方形ABCD中,AB=2 ,AD= ,M為DC的中點(diǎn),將△ADM沿AM折起,使得平面ADM⊥平面ABCM (Ⅰ)求證:AD⊥BM
(Ⅱ)若點(diǎn)E是線段DB上的一動(dòng)點(diǎn),問點(diǎn)E在何位置時(shí),二面角E﹣AM﹣D的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x2﹣ax﹣a)ex
(1)討論f(x)的單調(diào)性;
(2)若a∈(0,2),對(duì)于任意x1 , x2∈[﹣4,0],都有 恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的定義域是[a,b](a,b為整數(shù)),值域是[0,1],則滿足條件的整數(shù)數(shù)對(duì)(a,b)共有 個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面ABCD⊥平面ABEF,四邊形ABCD是正方形,四邊形ABEF是矩形,且AF= AD=a,G是EF的中點(diǎn),則GB與平面AGC所成角的正弦值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案