精英家教網 > 高中數學 > 題目詳情
13.已知正三棱錐P-ABC,點P,A,B,C都在半徑為1的球面上,若PA,PB,PC兩兩互相垂直,則球心到截面ABC的距離為$\frac{1}{3}$.

分析 先利用正三棱錐的特點,將球的內接三棱錐問題轉化為球的內接正方體問題,從而將所求距離轉化為正方體中,中心到截面的距離問題,利用等體積法可實現此計算.

解答 解:∵正三棱錐P-ABC,PA,PB,PC兩兩垂直,
∴此正三棱錐的外接球即以PA,PB,PC為三邊的正方體的外接球O,
∵球O的半徑為1,
∴正方體的邊長為$\frac{2\sqrt{3}}{3}$,即PA=PB=PC=$\frac{2\sqrt{3}}{3}$,
球心到截面ABC的距離即正方體中心到截面ABC的距離,
設P到截面ABC的距離為h,則正三棱錐P-ABC的體積V=$\frac{1}{3}$S△ABC×h=$\frac{1}{3}$S△PAB×PC=$\frac{1}{3}×\frac{1}{2}×(\frac{2\sqrt{3}}{3})^{3}$,
△ABC為邊長為$\frac{2\sqrt{6}}{3}$的正三角形,S△ABC=$\frac{\sqrt{3}}{4}$×($\frac{2\sqrt{6}}{3}$)2=$\frac{2\sqrt{3}}{3}$,
∴h=$\frac{2}{3}$,
∴球心(即正方體中心)O到截面ABC的距離為$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點評 本題主要考球的內接三棱錐和內接正方體間的關系及其相互轉化,棱柱的幾何特征,球的幾何特征,點到面的距離問題的解決技巧,有一定難度,屬中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

3.若{1,a,$\frac{a}$}={0,a2,a+b},則a2009+b2009的值為( 。
A.0B.1C.-1D.1或-1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.設數列{an}的前n項和為Sn,n∈N*.已知a1=1,a2=$\frac{3}{2}$,a3=$\frac{5}{4}$,且4an+2=4an+1-an
(1)求a4的值;
(2)證明:{an+1-$\frac{1}{2}$an}為等比數列;
(3)求數列{an}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.直線l的參數方程是$\left\{\begin{array}{l}{x=1+2t}\\{y=2-t}\end{array}\right.$(t∈R),則l的斜率為( 。
A.-1B.$\frac{1}{2}$C.-$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.“0<a<3”是“雙曲線$\frac{{x}^{2}}{a}$-$\frac{{y}^{2}}{9}$=1(a>0)的離心率大于2”的充要條件.(填寫“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.如圖,在四棱錐S-ABCD中,平面SAD⊥平面ABCD,四邊形ABCD為正方形,且P為AD的中點,Q為SB的中點.
(1)求證:PQ∥平面SCD;
(2)求證:;CD⊥SA
(3)若SA=SD,M為BC的中點,在棱SC上是否存在點N,使得平面DMN⊥平面ABCD?并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知 a1=3,a2=6,且 an+2=an+1-an,則a2011=( 。
A.3B.-3C.6D.-6

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.定義在R上的函數f(x)=$\frac{{{4^{x+1}}}}{{{4^x}+2}}$,S=f($\frac{1}{10}$)+f($\frac{2}{10}$)+…+f($\frac{9}{10}$),則S的值是18.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知tanα=3,求值:
(Ⅰ)$\frac{cosα-sinα}{cosα+sinα}$;
(Ⅱ)sinα-cosα.

查看答案和解析>>

同步練習冊答案