12.已知i是虛數(shù)單位,復(fù)數(shù)z=-1+3i,則復(fù)數(shù)z的模|z|=$\sqrt{10}$.

分析 利用復(fù)數(shù)模的計(jì)算公式即可得出.

解答 解:∵復(fù)數(shù)z=-1+3i,則復(fù)數(shù)z的模|z|=$\sqrt{(-1)^{2}+{3}^{2}}$=$\sqrt{10}$.
故答案為:$\sqrt{10}$.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)模的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)計(jì)一個(gè)算法框圖,計(jì)算S=1+2+3+…+100及T=1×2×3×…×100,并且用兩種語句表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知四邊形ABCD,AC是BD的垂直平分線,垂足為E,O為四邊形ABCD外一點(diǎn),設(shè)|$\overrightarrow{OB}$|=5,|$\overrightarrow{OD}$|=3,則($\overrightarrow{OA}$+$\overrightarrow{OC}$)•($\overrightarrow{OB}$-$\overrightarrow{OD}$)=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°.
(1)若(k$\overrightarrow{a}$-$\overrightarrow$)⊥($\overrightarrow{a}$+$\overrightarrow$),求k的值;
(2)若|k$\overrightarrow{a}$-$\overrightarrow$|<2,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(-4,7),則$\overrightarrow a$在$2\sqrt{3}\overrightarrow b$方向上的射影為(  )
A.$\sqrt{13}$B.$\frac{{\sqrt{13}}}{5}$C.$\sqrt{65}$D.$\frac{{\sqrt{65}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合M={x|x2-4x+4a<0},且2∉M,則實(shí)數(shù)a的取值范圍是(  )
A.{a|a>1}B.{a|a≥1}C.{a|a≤1}D.{a|0≤a≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)y=f(x)的定義域是[0,3],則函數(shù)g(x)=$\frac{f(x+1)}{x-2}$的定義域是( 。
A.[-1,2)B.[0,2)C.[-1,2]D.[0,2)∪(2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)=m(x-m)(x+m+3),g(x)=2x-4若滿足對(duì)于任意x∈R,f(x)<0和g(x)<0至少有一個(gè)成立.則m的取值范圍是(  )
A.(-5,0)B.(-4,0)C.(-∞,0)D.{-4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖1,梯形AECD中,AE∥CD,點(diǎn)B為邊AE上一點(diǎn),CB⊥BA,$AB=2CD=2BC=\sqrt{2}BE=2$,把△BCE沿邊BC翻折成圖2,使∠EBA=45°.

(1)求證:BD⊥EC;
(2)求平面ADE與平面CDE所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案